Data Science at Scale using Spark and Hadoop Training in Canada

  • Learn via: Classroom / Virtual Classroom / Online
  • Duration: 3 Days
  • Price: Please contact for booking options
We can host this training at your preferred location. Contact us!

Data scientists build information platforms to provide deep insight and answer previously unimaginable questions. Spark and Hadoop are transforming how data scientists work by allowing interactive and iterative data analysis at scale.

Learn how Spark and Hadoop enable data scientists to help companies reduce costs, increase profits, improve products, retain customers, and identify new opportunities.

Cloudera University’s three-day course helps participants understand what data scientists do, the problems they solve, and the tools and techniques they use. Through in-class simulations, participants apply data science methods to real-world challenges in different industries and, ultimately, prepare for data scientist roles in the field.

There are no prerequisites for this course.

This course is suitable for developers, data analysts, and statisticians with basic knowledge  of Apache Hadoop: HDFS, MapReduce, Hadoop Streaming, and Apache Hive as well as experience working in Linux environments. Students should have proficiency in a scripting language; Python is strongly preferred, but familiarity with Perl or Ruby is sufficient

Through instructor-led discussion and interactive, hands-on exercises, participants will navigate the Hadoop ecosystem, and develop concrete skills such as:

  • How to identify potential business use cases where data science can provide impactful results
  • How to obtain, clean and combine disparate data sources to create a coherent picture for analysis
  • What statistical methods to leverage for data exploration that will provide critical insight into your data
  • Where and when to leverage Hadoop streaming and Apache Spark for data science pipelines
  • What machine learning technique to use for a particular data science project
  • How to implement and manage recommenders using Spark’s MLlib, and how to set up and evaluate data experiments
  • What are the pitfalls of deploying new analytics projects to production, at scale

Introduction

  • About This Course
  • About Cloudera
  • Course Logistics
  • Introductions

Data Science Overview

  • What Is Data Science?
  • The Growing Need for Data Science
  • The Role of a Data Scientist

Use Cases

  • Finance
  • Retail
  • Advertising
  • Defense and Intelligence
  • Telecommunications and Utilities
  • Healthcare and Pharmaceuticals

Project Lifecycle

  • Steps in the Project Lifecycle
  • Lab Scenario Explanation

Data Acquisition

  • Where to Source Data
  • Acquisition Techniques

Evaluating Input Data

  • Data Formats
  • Data Quantity
  • Data Quality

Data Transformation

  • File Format Conversion
  • Joining Data Sets
  • Anonymization

Data Analysis and Statistical Methods

  • Relationship Between Statistics and Probability
  • Descriptive Statistics
  • Inferential Statistics
  • Vectors and Matrices

Fundamentals of Machine Learning

  • Overview
  • The Three C’s of Machine Learning
  • Importance of Data and Algorithms
  • Spotlight: Naive Bayes Classifiers

Recommender Overview

  • What is a Recommender System?
  • Types of Collaborative Filtering
  • Limitations of Recommender Systems
  • Fundamental Concepts

Introduction to Apache Spark and MLlib

  • What is Apache Spark?
  • Comparison to MapReduce
  • Fundamentals of Apache Spark
  • Spark’s MLlib Package

Implementing Recommenders with MLlib

  • Overview of ALS Method for

Latent Factor Recommenders

  • Hyperparameters for ALS Recommenders
  • Building a Recommender in MLlib
  • Tuning Hyperparameters
  • Weighting

Experimentation and Evaluation

  • Designing Effective Experiments
  • Conducting an Effective Experiment
  • User Interfaces for Recommenders

Production Deployment and Beyond

  • Deploying to Production
  • Tips and Techniques for Working at Scale
  • Summarizing and Visualizing Results
  • Considerations for Improvement
  • Next Steps for Recommenders

Conclusion



Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Canada facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

Classroom / Virtual Classroom
23 May 2024
Toronto, Montreal, Calgary
3 Days
Classroom / Virtual Classroom
08 July 2024
Toronto, Montreal, Calgary
3 Days
Classroom / Virtual Classroom
06 July 2024
Toronto, Montreal, Calgary
3 Days
Classroom / Virtual Classroom
10 July 2024
Toronto, Montreal, Calgary
3 Days
Classroom / Virtual Classroom
08 July 2024
Toronto, Montreal, Calgary
3 Days
Classroom / Virtual Classroom
17 July 2024
Toronto, Montreal, Calgary
3 Days
Classroom / Virtual Classroom
18 August 2024
Toronto, Montreal, Calgary
3 Days
Classroom / Virtual Classroom
19 August 2024
Toronto, Montreal, Calgary
3 Days
Data Science at Scale using Spark and Hadoop Training Course in Canada

Canada is a North American country. Known as the second-largest country of the world, Canada’s capital city is Ottawa. Toronto, Vancouver and Montreal are the biggest and most popular cities of this country. The 8,891-kilometer southern and western border between Canada and the United States is the world's longest intergovernmental land border. This country also has the longest coastline in the world.

Canada is a constitutional monarchy. The country was originally a British Empire colony and is now a part of the British Commonwealth. Both French and English are Canada’s official languages. Canada’s national animal is a beaver and the its flag design is a vertical triband of red and white with a red maple leaf charged in the centre. Some of the top-rated tourist attractions in Canada are Niagara Falls, Banff National Park and Rocky Mountains, CN Tower in Toronto City, Bay of Fundy, Old Quebec (Vieux-Quebec in French), the ski resort of Whistler, Ottawa's Parliament Hill and Vancouver Island.

Choose from our extensive selection of IT courses, covering programming, data analytics, software development, business skills, cloud computing, cybersecurity, project management. Our highly skilled instructors will deliver hands-on training and valuable insights at a location of your choice within Canada.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.