
Maslak Mahallesi, Maslak Meydan Sk. No:5. Spring Giz Plaza. Maslak/İstanbul
+90 212 282 7700 - info@bilginc.com

Fast Track to Java
Learn via: Classroom / Virtual Classroom / Online
Duration: 4 Day
https://bilginc.com/en/training/fast-track-to-java-5595-training/

Overview
This is an intensive course designed to introduce software developers to the Java ecosystem in general and the Java 9 language in particular. All four
programming styles supported by Java are covered in depth, but with a particular emphasis on the functional style and its growing importance to both
parallel and cloud computing.

The course is aimed primarily at three groups. Firstly experienced coders who will be moving into Java from other languages, secondly developers who
need an update to the new features in Java 8 / 9 and finally graduates looking to consolidate knowledge gained through academia

In addition to the core language topics, the course also covers a variety of the skills required on modern Java / JEE projects. These include Reactive
Programming (via Project Reactor), Test Driven Development (via JUnit / Mockito) and Behaviour Driven Development (using Cucumber).

Prerequisites
Delegates must be proficient programmers, ideally with several years commercial programming experience

What You Will Learn
Learn Java from the basics right up to the latest Java 9 features
Understand when to apply all supported programming styles
Learn how to use TDD and BDD to test your code
Become comfortable applying functional and reactive programming techniques

Outline

Introducing the Java Landscape

Origins and goals of the Java language
Bytecode and the Java Virtual Machine
Distinguishing between JME and Android
Where Microservices and the JEE diverge
Popular languages on the Java platform

Essential JVM Concepts

Types, packages and archives (JAR/WAR/EAR)
References and tuning Garbage Collection
Hierarchical class loading and Agents
The CLASSPATH environment variable
The new Module System in Java 9

Basic Java Programming

Primitive types and literal values
Java syntax for binary and numeric literals
The difference between reference and value types

Printed on: 04/20/2024 Page: 1/4

https://bilginc.com/en/training/fast-track-to-java-5595-training/

Converting between strings and numerical types
Parsing console input with the Scanner class
Pretty-printing with the Formatter class
Performing iteration and selection in Java
Support for strings in switch statements
Equality with primitive and reference types
Creating and manipulating arrays
The costs of string concatenation

Object Oriented Development - Part 1

Creating basic Java classes
Choosing accessibility levels
Inheriting from a base class
Overloading and overriding methods
Comparisons using the instanceof operator
Comparisons using java.lang.Class objects
Creating abstract and final classes

Object Oriented Development - Part 2

Writing appropriate class constructors
Private constructors and singletons
Static and instance initialization blocks
Top down class and object initialization
Declaring and implementing interfaces
Using inner and anonymous classes
Implementing equals and hashCode
Cloning and copy constructors

Enumerations

Why Java historically lacked enum support
The Typesafe Enumeration Design Pattern
How Java 5 baked the pattern into the language
Extending enums with new members
Helper methods added to enum types
Collections which support enums

Annotations and Meta-Programming

Adding metadata to Java code
The advantages of annotations
Annotations verses configuration files
Declaring Java 5 annotation types
Understanding meta-annotations
Adding methods to annotation types
Defining default values for methods
Discovering annotations with reflection
Writing annotation processors in Java 6
Enhancements to annotations in Java 8

Functional Programming with Method References and Lambdas

Overview of the key concepts of Functional Programming
The concept of ‘method references’ in the language and JVM
Creating references to methods, static methods and constructors
Understanding when and why to use lambda expressions
The various syntax options when declaring lambdas
Making use of the @FunctionalInterface annotation
Lexical scoping and ‘effectively final’ variables
Support for type inference of parameters in lambdas
Best practices when declaring and using lambdas

Introducing the Collections API

Introducing lists, sets and maps
Using iterators and enumerations
Choosing the most efficient collections
Specialized collections in other packages
Collections designed for concurrent access
Open source alternatives to regular collections

Printed on: 04/20/2024 Page: 2/4

Functional Programming With Collections and Streams

Introducing the java.util.stream.Stream interface
Different ways of creating streams of objects
How Optional helps eliminate null pointer exceptions
Using parallel and sequential to switch processing model
Performing filtering and mapping on a streams content
Using reduce to compute a final value from a stream
Understanding the purpose and value of flatMap
The collect method and its many different applications
Enhancements to the streams library in Java 9
Support for Reactive Programming in Java 9
Taking Rx further via Project Reactor

Exception Handling in Java

Introducing errors, runtime exceptions and checked exceptions
Special consideration for exceptions in constructors and finalizers
Implementing an effective exception handling strategy
Using finally blocks properly to perform ‘clean-up’ tasks
Java 7 improvements to the try…catch syntax
The try-with-resources syntax introduced in Java 7

Generics in Java

Introducing Type Parameters and generic code
Understanding reified vs. non-reified Generics
Generics is a compile time feature in Java
Declaring generic classes and methods
Type inference when creating generic types
Creating your own generic collection classes
Support for Generics in the Reflection API
Using the wildcard type in utility methods
Defining constraints with bounded wildcards
Making sense of upper and lower bounds
Common confusions with wildcards
How compilers perform Type Erasure

The Date and Time API

How JSR310 evolved from the Joda Time library
Working with instants, clocks and time zones
Performing calculations with dates and times
Using adjusters to make common changes to dates
Parsing and formatting dates and times
Combining the API with legacy code

TDD in Java with JUnit and Mockito

Defining your intent through tests
Writing just enough code to pass
Adding tests and refining the code
Testing up to the point of boredom
Triangulating on hard problems
Moving up and down the gears
You aren’t going to need it (YAGNI)
Why encapsulated dependencies are bad
Using DI to isolate dependencies
Creating and injecting Test Doubles
Situations where TDD will not work

Behaviour Driven Development in Java with Cucumber

How BDD evolved from Test Driven Development
Writing scenarios using the Gherkin syntax
Moving shared steps into a background section
Embedding data tables within scenarios
Setting up JUnit to run and configure Cucumber
Creating a class to hold step definitions
Writing step definitions via annotations in Java 6
Writing step definitions via lambdas in Java 8

Printed on: 04/20/2024 Page: 3/4

Matching to the content of steps via regex
Using sub-matches to capture input values
How cucumber converts and tokenizes inputs
Reading and extracting values from data tables

Printed on: 04/20/2024 Page: 4/4

	Fast Track to Java
	Introducing the Java Landscape
	Essential JVM Concepts
	Basic Java Programming
	Object Oriented Development - Part 1
	Object Oriented Development - Part 2
	Enumerations
	Annotations and Meta-Programming
	Functional Programming with Method References and Lambdas
	Introducing the Collections API
	Functional Programming With Collections and Streams
	Exception Handling in Java
	Generics in Java
	The Date and Time API
	TDD in Java with JUnit and Mockito
	Behaviour Driven Development in Java with Cucumber

