Machine Learning on Google Cloud Training in Hong Kong

  • Learn via: Classroom
  • Duration: 5 Days
  • Level: Intermediate
  • Price: From €4,270+VAT
We can host this training at your preferred location. Contact us!

This course introduces the artificial intelligence (AI) and machine learning (ML) offerings on Google Cloud that support the data-to-AI lifecycle through AI
foundations, AI development, and AI solutions. It explores the technologies, products, and tools available to build an ML model, an ML pipeline, and a generative AI project. You learn how to build AutoML models without writing a single line of code; build BigQuery ML models using SQL, and build Vertex AI custom training jobs by using Keras and TensorFlow. You also explore data preprocessing techniques and feature engineering.
Who is this training for?
This course is intended for the following:
  • Aspiring ML data scientists and engineers
  • Data scientists, ML developers, ML engineers, data engineers, data analysts
  • Google and partner field personnel who work with customers in those job roles
Products
  • Vertex AI
  • AutoML
  • BigQuery ML
  • Vertex AI Pipelines
  • TensorFlow
  • Model Garden
  • Generative AI Studio
  • Large language model (LLM) APIs
  • Natural Language API
  • Vertex AI Workbench
  • Vertex AI Feature Store
  • Vizier
  • Dataplex
  • Analytics Hub
  • Data Catalog
  • TensorFlow
  • Vertex AI TensorBoard
  • Dataflow
  • Dataprep
  • Vertex AI Pipelines

To get the most out of this course, participants should have:
  • Some familiarity with basic machine learning concepts
  • Basic proficiency with a scripting language, preferably Python

  • Describe the technologies, products, and tools to build an ML model, an ML pipeline, and a Generative AI project.
  • Understand when to use AutoML and BigQuery ML.
  • Create Vertex AI-managed datasets.
  • Add features to the Vertex AI Feature Store.
  • Describe Analytics Hub, Dataplex, and Data Catalog.
  • Describe how to improve model performance.
  • Create Vertex AI Workbench user-managed notebook, build a custom training job, and deploy it by using a Docker container.
  • Describe batch and online predictions and model monitoring.
  • Describe how to improve data quality and explore your data.
  • Build and train supervised learning models.
  • Optimize and evaluate models by using loss functions and performance metrics.
  • Create repeatable and scalable train, eval, and test datasets.
  • Implement ML models by using TensorFlow or Keras.
  • Understand the benefits of using feature engineering.
  • Explain Vertex AI Model Monitoring and Vertex AI Pipelines.

Introduction to AI and Machine Learning on Google Cloud
  • Recognize the AI/ML framework on Google Cloud.
  • Identify the major components of Google Cloud infrastructure.
  • Define the data and ML products on Google Cloud and how they support the data-to-AI lifecycle.
  • Build an ML model with BigQueryML to bring data to AI.
  • Define different options to build an ML model on Google Cloud.
  • Recognize the primary features and applicable situations of pre-trained APIs, AutoML, and custom training.
  • Use the Natural Language API to analyze text.
  • Define the workflow of building an ML model.
  • Describe MLOps and workflow automation on Google Cloud.
  • Build an ML model from end-to-end by using AutoML on Vertex AI.
  • Define generative AI and large language models.
  • Use generative AI capabilities in AI development.
  • Recognize the AI solutions and the embedded generative AI features.
  • Hands-On Labs
  • Module Quizzes
  • Module Readings
Launching into Machine Learning
  • Describe how to improve data quality.
  • Perform exploratory data analysis.
  • Build and train supervised learning models.
  • Describe AutoML and how to build, train, and deploy an ML model without writing a single line of code.
  • Describe BigQuery ML and its benefits.
  • Optimize and evaluate models by using loss functions and performance metrics.
  • Mitigate common problems that arise in machine learning.
  • Create repeatable and scalable training, evaluation, and test datasets.
  • Hands-On Labs
  • Module Quizzes
  • Module Readings
TensorFlow on Google Cloud
  • Create TensorFlow and Keras machine learning models.
  • Describe the TensorFlow main components.
  • Use the tf.data library to manipulate data and large datasets.
  • Build a ML model that uses tf.keras preprocessing layers.
  • Use the Keras Sequential and Functional APIs for simple and advanced model creation.
  • Train, deploy, and productionalize ML models at scale with the Vertex AI Training Service.
  • Hands-On Labs
  • Module Quizzes
  • Module Readings
Feature Engineering
  • Describe Vertex AI Feature Store.
  • Compare the key required aspects of a good feature.
  • Use tf.keras.preprocessing utilities for working with image data, text data, and sequence data.
  • Perform feature engineering by using BigQuery ML, Keras, and TensorFlow.
  • Hands-On Labs
  • Module Quizzes
  • Module Readings
Machine Learning in the Enterprise
  • Understand the tools required for data management and governance.
  • Describe the best approach for data preprocessing: From providing an overview of Dataflow and Dataprep to using SQL for preprocessing tasks.
  • Explain how AutoML, BigQuery ML, and custom training differ and when to use a particular framework.
  • Describe hyperparameter tuning by using Vertex AI Vizier to improve model performance.
  • Explain prediction and model monitoring and how Vertex AI can be used to manage ML models.
  • Describe the benefits of Vertex AI Pipelines.
  • Describe best practices for model deployment and serving, model monitoring, Vertex AI Pipelines, and artifact organization.
  • Hands-On Labs
  • Module Quizzes
  • Module Readings


Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Hong Kong facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

09 February 2025 (5 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
10 February 2025 (5 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
€4,270 +VAT
Book Now
17 February 2025 (5 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
20 February 2025 (5 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
09 February 2025 (5 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
10 February 2025 (5 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
€4,270 +VAT
Book Now
17 February 2025 (5 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
20 February 2025 (5 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
Machine Learning on Google Cloud Training Course in Hong Kong

Hong Kong is officially known as the Hong Kong Special Administrative Region of the People's Republic of China (HKSAR) and is a city and special administrative region of China on the eastern Pearl River Delta in South China. Hong Kong is one of the most densely populated places in the world, with over 7.5 million population. The official languages of the HKSAR are Chinese and English. Hong Kong is a highly developed territory and ranks fourth on the United Nations Human Development Index and the residents of Hong Kong have the highest life expectancies in the world.

The best time to visit Hong Kong is from September to December, since the temperatures, averaging between 19 to 28 degree Celsius. During this outdoor activities-friendly travelling season, you can take a walk along Victoria Harbour, visit the islands of Lantau, Lamma and Cheung Chau and participate in the Mid-Autumn Festival. Top choices of the tourists to visit in Hong Kong are Big Buddha statue, Wong Tai Sin Temple, Repulse Bay and the Beaches and Hong Kong Disneyland.

Explore our diverse range of IT courses, encompassing programming, software development, cyber security, data science, business skills, and Agile/Scrum. Wherever you are in Hong Kong, our seasoned instructors will bring practical training and expert knowledge to your preferred training venue.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.