Machine Learning Pipelines on AWS Training in Hong Kong

  • Learn via: Classroom
  • Duration: 4 Days
  • Level: Intermediate
  • Price: From €4,855+VAT
We can host this training at your preferred location. Contact us!

This course explores how to use the machine learning (ML) pipeline to solve a real business problem in a project-based learning environment. Students will learn about each phase of the pipeline from instructor presentations and demonstrations and then apply that knowledge to complete a project solving one of three business problems: fraud detection, recommendation engines, or flight delays. By the end of the course, students will have successfully built, trained, evaluated, tuned, and deployed an ML model using Amazon SageMaker that solves their selected business problem.

Intended Audience

This course is intended for:

  • Developers
  • Solutions Architects
  • Data Engineers
  • Anyone with little to no experience with ML and wants to learn about the ML pipeline using Amazon SageMaker

Delivery Method

This course is delivered through a mix of:

  • Instructor-led training
  • Hands-on labs
  • Demonstrations
  • Group exercises

We recommend that attendees of this course have the following prerequisites:

  • Basic knowledge of Python programming language
  • Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
  • Basic experience working in a Jupyter notebook environment

In this course, you will learn how to:

  • Select and justify the appropriate ML approach for a given business problem
  • Use the ML pipeline to solve a specific business problem
  • Train, evaluate, deploy, and tune an ML model in Amazon SageMaker
  • Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
  • Apply machine learning to a real-life business problem after the course is complete

Module 1: Introduction to Machine Learning and the ML Pipeline

  • Overview of machine learning, including use cases, types of machine learning, and key concepts
  • Overview of the ML pipeline
  • Introduction to course projects and approach

Module 2: Introduction to Amazon SageMaker

  • Introduction to Amazon SageMaker
  • Demo: Amazon SageMaker and Jupyter notebooks
  • Lab 1: Introduction to Amazon SageMaker

Module 3: Problem Formulation

  • Overview of problem formulation and deciding if ML is the right solution
  • Converting a business problem into an ML problem
  • Demo: Amazon SageMaker Ground Truth
  • Hands-on: Amazon SageMaker Ground Truth
  • Problem Formulation Exercise and Review
  • Project work for Problem Formulation

Day Two

Recap and Checkpoint #1

Module 4: Preprocessing

  • Overview of data collection and integration, and techniques for data preprocessing and visualization
  • Lab 2: Data Preprocessing (including project work)

Module 5: Model Training

  • Choosing the right algorithm
  • Formatting and splitting your data for training
  • Loss functions and gradient descent for improving your model
  • Demo: Create a training job in Amazon SageMaker

Day Three

Recap and Checkpoint #2

Module 6: Model Training

  • How to evaluate classification models
  • How to evaluate regression models
  • Practice model training and evaluation
  • Train and evaluate project models
  • Lab 3: Model Training and Evaluation (including project work)
  • Project Share-Out 1

Module 7: Feature Engineering and Model Tuning

  • Feature extraction, selection, creation, and transformation
  • Hyperparameter tuning
  • Demo: SageMaker hyperparameter optimization

Day Four

Lab 4: Feature Engineering (including project work)

Recap and Checkpoint #3

Module 8: Module Deployment

  • How to deploy, inference, and monitor your model on Amazon SageMaker
  • Deploying ML at the edge

Module 9: Course Wrap-Up

  • Project Share-Out 2
  • Post-Assessment
  • Wrap-up



Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Hong Kong facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

Classroom / Virtual Classroom
25 November 2024
Hong Kong, Kowloon, Tsuen Wan
4 Days
Classroom / Virtual Classroom
25 November 2024
Hong Kong, Kowloon, Tsuen Wan
4 Days
Classroom / Virtual Classroom
10 December 2024
Hong Kong, Kowloon, Tsuen Wan
€4,855 +VAT Book Now
Classroom / Virtual Classroom
25 November 2024
Hong Kong, Kowloon, Tsuen Wan
4 Days
Classroom / Virtual Classroom
25 November 2024
Hong Kong, Kowloon, Tsuen Wan
4 Days
Classroom / Virtual Classroom
10 December 2024
Hong Kong, Kowloon, Tsuen Wan
€4,855 +VAT Book Now
Classroom / Virtual Classroom
11 March 2025
Hong Kong, Kowloon, Tsuen Wan
4 Days
Classroom / Virtual Classroom
17 March 2025
Hong Kong, Kowloon, Tsuen Wan
4 Days
Machine Learning Pipelines on AWS Training Course in Hong Kong

Hong Kong is officially known as the Hong Kong Special Administrative Region of the People's Republic of China (HKSAR) and is a city and special administrative region of China on the eastern Pearl River Delta in South China. Hong Kong is one of the most densely populated places in the world, with over 7.5 million population. The official languages of the HKSAR are Chinese and English. Hong Kong is a highly developed territory and ranks fourth on the United Nations Human Development Index and the residents of Hong Kong have the highest life expectancies in the world.

The best time to visit Hong Kong is from September to December, since the temperatures, averaging between 19 to 28 degree Celsius. During this outdoor activities-friendly travelling season, you can take a walk along Victoria Harbour, visit the islands of Lantau, Lamma and Cheung Chau and participate in the Mid-Autumn Festival. Top choices of the tourists to visit in Hong Kong are Big Buddha statue, Wong Tai Sin Temple, Repulse Bay and the Beaches and Hong Kong Disneyland.

Explore our diverse range of IT courses, encompassing programming, software development, cyber security, data science, business skills, and Agile/Scrum. Wherever you are in Hong Kong, our seasoned instructors will bring practical training and expert knowledge to your preferred training venue.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.