Amazon SageMaker Studio for Data Scientists Training in Nigeria

  • Learn via: Classroom
  • Duration: 3 Days
  • Level: Expert
  • Price: From €3,750+VAT
We can host this training at your preferred location. Contact us!

Explore Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models.
Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models quickly. It does this by bringing together a broad set of capabilities purpose-built for ML. This course prepares experienced data scientists to use the tools that are a part of SageMaker Studio, including Amazon CodeWhisperer and Amazon CodeGuru Security scan extensions, to improve productivity at every step of the ML lifecycle.
  • Course level: Advanced
  • Duration: 3 days
  • Activities
This course includes presentations, hands-on labs, demonstrations, discussions, and a capstone project.
WHO SHOULD ATTEND?
Experienced data scientists who are proficient in ML and deep learning fundamentals

  • Experience using ML frameworks
  • Python programming experience
  • At least 1 year of experience as a data scientist responsible for training, tuning, and deploying models
  • AWS Technical Essentials

Accelerate the process to prepare, build, train, deploy, and monitor ML solutions using Amazon SageMaker Studio

Day 1
Module 1: Amazon SageMaker Studio Setup
  • JupyterLab Extensions in SageMaker Studio
  • Demonstration: SageMaker user interface demo
Module 2: Data Processing
  • Using SageMaker Data Wrangler for data processing
  • Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
  • Using Amazon EMR
  • Using AWS Glue interactive sessions
  • Using SageMaker Processing with custom scripts
Module 3: Model Development
  • SageMaker training jobs
  • Built-in algorithms
  • Bring your own script
  • Bring your own container
  • SageMaker Experiments
Day 2
Module 3: Model Development (continued)
  • SageMaker Debugger
  • Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
  • Automatic model tuning
  • SageMaker Autopilot: Automated ML
  • Demonstration: SageMaker Autopilot
  • Bias detection
  • SageMaker Jumpstart
Module 4: Deployment and Inference
  • SageMaker Model Registry
  • SageMaker Pipelines
  • SageMaker model inference options
  • Scaling
  • Testing strategies, performance, and optimization
Module 5: Monitoring
  • Amazon SageMaker Model Monitor
  • Discussion: Case study
  • Demonstration: Model Monitoring
Day 3
Module 6: Managing SageMaker Studio Resources and Updates
  • Accrued cost and shutting down
  • Updates
  • Capstone
Environment setup

  • Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
  • Challenge 2: Create feature groups in SageMaker Feature Store
  • Challenge 3: Perform and manage model training and tuning using SageMaker Experiments
  • (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
  • Challenge 5: Evaluate the model for bias using SageMaker Clarify
  • Challenge 6: Perform batch predictions using model endpoint
  • (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline
  • Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
  • SageMaker Feature Store
  • Hands-On Lab: Feature engineering using SageMaker Feature Store
  • Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
  • Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning Models
  • Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
  • Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
  • Hands-On Lab: Inferencing with SageMaker Studio


Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Nigeria facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

08 January 2025 (3 Days)
Lagos, Onitsha, Kano
Classroom / Virtual Classroom
20 January 2025 (3 Days)
Lagos, Onitsha, Kano
Classroom / Virtual Classroom
08 January 2025 (3 Days)
Lagos, Onitsha, Kano
Classroom / Virtual Classroom
20 January 2025 (3 Days)
Lagos, Onitsha, Kano
Classroom / Virtual Classroom
03 March 2025 (3 Days)
Lagos, Onitsha, Kano
Classroom / Virtual Classroom
03 March 2025 (3 Days)
Lagos, Onitsha, Kano
Classroom / Virtual Classroom
07 April 2025 (3 Days)
Lagos, Onitsha, Kano
Classroom / Virtual Classroom
18 April 2025 (3 Days)
Lagos, Onitsha, Kano
Classroom / Virtual Classroom
Amazon SageMaker Studio for Data Scientists Training Course in Nigeria

Nigeria is located on the western coast of Africa. As the most populous country in Africa, Nigeria is a multinational union with more than 250 ethic groups. Even though the official language is English, there are over 520 native languages spoken in Nigeria. Their huge reserve of petroleum plays a crucial role in the Nigerian economy. While Abuja is the capital of Nigeria, its largest city is Lagos.

Nigeria is a member of the African Union and the British Commonwealth. Nigeria is named after the great Niger River and its national animal is an eagle. Nationals Parks are quite common in Nigeria and all of them are vast and breathtaking. Gashaka Gumti, Kainji Lake, Yankari and Okomu are the most popular national parks.

Broaden your IT expertise with our wide-ranging courses, covering programming, software development, business skills, data science, cybersecurity, cloud computing and virtualization. Count on our seasoned instructors to deliver immersive training and practical insights wherever you choose in Nigeria.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.