Predictive Modeling for Categorical Targets Using IBM SPSS Modeler (v18.1.1) Eğitimi

  • Eğitim Tipi: Classroom / Virtual Classroom / Online
  • Süre: 1 Gün
  • Bu eğitimi kendi kurumunuzda planlayabilirsiniz. Bize Ulaşın!
En Yakın Tarih

25 Nisan 2022

1 Gün

This course focuses on using analytical models to predict a categorical field, such as churn, fraud, response to a mailing, pass/fail exams, and machine break-down. Students are introduced to decision trees such as CHAID and C&R Tree, traditional statistical models such as Logistic Regression, and machine learning models such as Neural Networks. Students will learn about important options in dialog boxes, how to interpret the results, and explain the major differences between the models.

Experience using IBM SPSS Modeler including familiarity with the Modeler environment, creating streams, reading data files, exploring data, setting the unit of analysis, combining datasets, deriving and reclassifying fields, and a basic knowledge of modeling.
• Prior completion of Introduction to IBM SPSS Modeler and Data Science (v18.1) is recommended

Please refer to course overview

1: Introduction to predictive models for categorical targets
• Identify three modeling objectives
• Explain the concept of field measurement level and its implications for selecting a modeling technique
• List three types of models to predict categorical targets

2: Building decision trees interactively with CHAID
• Explain how CHAID grows decision trees
• Build a customized model with CHAID
• Evaluate a model by means of accuracy, risk, response and gain
• Use the model nugget to score records

3: Building decision trees interactively with C&R Tree and Quest
• Explain how C&R Tree grows a tree
• Explain how Quest grows a tree
• Build a customized model using C&R Tree and Quest
• List two differences between CHAID, C&R Tree, and Quest

4: Building decision trees directly
• Customize two options in the CHAID node
• Customize two options in the C&R Tree node
• Customize two options in the Quest node
• Customize two options in the C5.0 node
• Use the Analysis node and Evaluation node to evaluate and compare models
• List two differences between CHAID, C&R Tree, Quest, and C5.0

5: Using traditional statistical models
• Explain key concepts for Discriminant
• Customize one option in the Discriminant node
• Explain key concepts for Logistic
• Customize one option in the Logistic node

6: Using machine learning models
• Explain key concepts for Neural Net
• Customize one option in the Neural Net node



Eğitimlerle ilgili bilgi almak ve diğer tüm sorularınız için bize ulaşın!

Yakın tarihte açılacak eğitimler

Sınıf eğitimlerimizi İstanbul, Ankara ve Londra ofislerimizde düzenlemekteyiz. Kurumunuza özel eğitimleri ise, dilediğiniz tarih ve lokasyonda organize edebiliriz.

25 Nisan 2022

Classroom / Virtual Classroom

İstanbul, Ankara, Londra
22 Mayıs 2022

Classroom / Virtual Classroom

İstanbul, Ankara, Londra
06 Haziran 2022

Classroom / Virtual Classroom

İstanbul, Ankara, Londra
26 Haziran 2022

Classroom / Virtual Classroom

İstanbul, Ankara, Londra
08 Temmuz 2022

Classroom / Virtual Classroom

İstanbul, Ankara, Londra
14 Temmuz 2022

Classroom / Virtual Classroom

İstanbul, Ankara, Londra
18 Temmuz 2022

Classroom / Virtual Classroom

İstanbul, Ankara, Londra
17 Ağustos 2022

Classroom / Virtual Classroom

İstanbul, Ankara, Londra
Sitemizi kullanarak çerezlere (cookie) izin vermektesiniz. Detaylı bilgi için Çerez Politika'mızı inceleyebilirsiniz.