
Maslak Mahallesi, Maslak Meydan Sk. No:5. Spring Giz Plaza. Maslak/İstanbul
+90 212 282 7700 - info@bilginc.com

Modern Expressive C++
Learn via: Classroom / Virtual Classroom / Online
Duration: 5 Gün
https://bilginc.com/tr/egitim/modern-expressive-cplusplus-758-egitimi/

Overview
C++ is undoubtedly one of the most popular programming languages for software development. It brings language enhancements and object-oriented
programming support to the extremely popular language C . However, C ++ is a large and sometimes difficult language, and even with a C or object
oriented background, a programmer needs to understand C ++ programming style as well as C ++ constructs to get the best out of it.

The course is written from a developers rather than an academics perspective, providing a thorough practical coverage of the language. It aims to
eliminate common misconceptions and poor programming practice by teaching the features of the language and standard library that enforce good
practice.

In particular the course teaches the Modern C++ approach, to deliver clear expressive and efficient code. Although C++11 and more recent additions to
the language are taught throughout, most of the material is useful and relevant to pre C++11 users.

This is a hands-on course with a mix of tuition and practical sessions for each technical chapter which reinforce the Modern Expressive C ++ programming
techniques covered in the course. Delegates will write unit tests to verify their work as they develop a GUI based tool to support their learning.

Prerequisites
Delegates must have solid experience of programming, with a clear understanding of functions and multiple source file projects. A basic
understanding of Object Oriented principles is assumed. Those coming from C, C# or Java will have an advantage.
Delegates with no recent programming experience should attend the Programming Foundations course first.
Experienced C++ programmers should also consider the QA course Modern Robust C++ Development.

What You Will Learn
Define and use data types.
Declare, define and call functions.
Use pointers, smart pointers, dynamic memory and object lifetime.
Understand the importance and application of const consistency.
Understand the key concepts and vocabulary of object orientation.
Implement classes.
Provide inward and outward conversions to UDT's.
Build new classes from other classes using composition and aggregation.
Build new classes from other classes using inheritance.
Design and write code with polymorphic behaviour.
Use container classes and templates.
Make extensive use of algorithms.
Write code that is efficient and robust

Outline
Chapter 1 – Introduction

Style and Approach

Chapter 2 – Language Overview

Why use C++?
Language Distinctives
Classic v Modern C++
File Structure
Online Compilers

Printed on: 03.29.2024 Page: 1/5

https://bilginc.com/tr/egitim/modern-expressive-cplusplus-758-egitimi/

Hello World
Identifiers
Keywords
Declarations
Definitions
Expressions and Statements
Member Access
Operators
Layout

Chapter 3 –Variables and Functions

Mutable and Immutable Variable types
Auto Variables
Brace or List Initialization, Uniform Initialization
Scope Types
Lifetime
Namespaces
Name Hiding
Scope Resolution
Function Prototype
Parameter Types
Reference
Function Return Types
Trailing Return
Header Files
Function Parameter Defaults
Function implementation
Inline function
Source-code Implementation
Deduced Return Type
Anonymous Return
Un-named arguments

Chapter 4 – Collections

Arrays
Array Initialisation
Array Behaviour
Arrays as Arguments
std::array
Vector Basics
Enumeration – Range For-loop
File System Basics
File-Streaming

Chapter 5 – Types and Const Qualifiers

Primitive Types
Uninitialised Values
Type Aliases
This-pointer
Const Objects
Const Function Parameters
Queries and Modifiers
Free Functions

Chapter 6 – Foundational Design Principles

Encapsulation
Private Access
Things that Break Encapsulation
Single Responsibility Principle
Expressiveness
Expressive Names
Resource Acquisition Is Initialization – RAII

Chapter 7 – Literals and Strings

Literals and Magic-Numbers
Numeric Limits
Strings
Tokenization
stringstream

Printed on: 03.29.2024 Page: 2/5

Formatting Streams

Chapter 8 – Flow Control

Boolean
Conditions & Boolean Operators
If - Else
Range-For
Counted For-Loop
While-loop
Enum
Switch
Cost of testing and branching

Chapter 9 – Header Files

One Definition Rule
#define
constexpr literals
Precompiled Header Files

Chapter 10 – Unit Testing

What should be tested?
Project Arrangement
Unit Tests
Compiling Source Code to Use Libraries

Chapter 11 – Iterators

Operators
Prefix / Postfix Increment / Decrement
Iterators
Member Access Operators
Moving Iterators
Query Iterators
Iterator Position

Chapter 12 – Pointers

Naked Reference
Problems with Null-Pointers
Query Pointers
Array Pointers
Aggregate Pointers
Function Pointers
void, void pointers
Pointers as Iterators

Chapter 13 – Zero-Cost Abstractions

Encapsulating Concepts
Enumerated Type, enum
Bitwise (Flag) Enums

Chapter 14 – Lambdas

How Expressiveness Breaks Encapsulation
Locally defined function
Lambda Syntax
Capture List
Argument List
Return Type
Lambda Body
Lambda Closure as Function Pointer
Inlined Lambda
Immediately Invoked Lambda
Lambdas in Header Files

Chapter 15 – Algorithms

Non-Range Algorithms
Range Algorithms
Algorithm Examples
back_inserter

Printed on: 03.29.2024 Page: 3/5

Loops and Folds
Accumulating Strings

Chapter 16 – Inline and Extern

Symbol Tables
Header Files Defining Objects or Functions
Inlining
Extern

Chapter 17 – Container Types

Compile-time sized containers
Dynamically sized Sequential Containers
Dynamically Sized Associative Containers

Chapter 18 – Type Conversions

Implicit Type Conversions
Keyword Casts
Conversion Constructor – Inward Conversion
Class Operators
Conversion Assignment
Conversion Operator - Outward Conversion
Allowable Conversions

Chapter 19 – Function Overloading

Function Overloading
Overloading on Const
Function Delegation
Inlined Function Definitions
Template Functions
Template Classes

Chapter 20 – Classes

Programming Paradigms
Object Oriented Programming (OOP)
Class Definition
Public Interface
Class Header File
Construction
In-Class Defaults
Default Constructor
Destruction
Synthesised Functions
Member Function Implementation
Member Initializer List (MIL)
std::initializer_list Constructor
Static Storage
Class Static Data
Class Static Functions
Struct

Chapter 21 – Inheritance

Inheritance Hierarchy
Liskov substitution
Public Inheritance
Function Specialisation
Protected Access
Private Inheritance
Accessing Base Class Members
Multiple Inheritance
Base Class Construction
Constructor Delegation
Generalisation
Abstract Classes

Chapter 22 – Polymorphism

Virtual Functions
Override
Virtual Destructor

Printed on: 03.29.2024 Page: 4/5

Pure Functions
Pure Abstract Class (Interface Class)
Null-Objects

Chapter 23 – Association

Association
Composition
Inheritance
Aggregation
Object Creation for Aggregation
new and delete
Array New & Delete
New and Delete Problems
Expressive Lifetime Management
unique_ptr
shared_ptr
Safe Aggregation
Multiple Association
Friendship

Printed on: 03.29.2024 Page: 5/5

	Modern Expressive C++

