Learn how to contribute to the adoption of machine learning and AI features in your business.
Learn to separate reality from myth, and filter real-world applications from business media buzz. This class is a fast-paced, intensive literacy class which leaves you quickly equipped with a broad range of management tools to incorporate machine intelligence into your own business strategy. “AI” is a buzzword, but the actual technology behind machine learning and other machine intelligence services is very real. Although there is broad consensus among major management analysts that AI and machine learning are immediate disruptors to most technology services, there is still very little practical adoption when it comes to integrating these features.
The difficulties of adoption come with good reason. The data science and application engineering skills required to execute on a machine intelligence strategy and demonstrate concrete value from it are still the domain of only a few. But with tools such as Google’s open-source TensorFlow and others coming online all the time, suddenly much of the doctoral-level science of AI is already built into services that are more accessible to development teams. Even small wins on an AI strategy can move the needle, and competitive position is being grabbed by those that can execute.
This class teaches you how to navigate the machine intelligence landscape and build actual use cases for your own scenarios. You’ll learn what types of teams, roles, platforms, and tools are required for a practical adoption strategy. You’ll learn to profile good candidate projects for AI features and spot business opportunities where AI could be useful. Group exercises allow you to exchange ideas with peers and work together to arrive at your own creative examples. The level of detail covered in this workshop leaves you thoroughly informed about the state of the art in AI and machine learning, and ready to face the future on your own teams.
Introduction
Case study: We will introduce the class to three real-world use cases – one in finance, one in health science, and one in general operations. In small groups, you will discuss implications of the cases and see if you and your peers can spot any parallel opportunities in your own business.
The Big Data Prerequisite
Implementing Machine Learning
Case study: TensorFlow – We will take a look at Google’s TensorFlow as a tool for integrating machine learning features. We’ll come away from the exercise with an understanding of the programming skills needed to leverage TensorFlow and the impacts of normal application workflow.
Creating Concrete Value
Case Study: Scoring the criteria for three potential applications. In groups, we’ll evaluate application use cases for machine learning: Medical imaging, electronic medical records, and genomics. We’ll grade each use case based on a scorecard for the following:
Machine intelligence as part of the customer experience
Machine Intelligence & Cybersecurity
Filling the Internal Capability Gap
Conclusion and Charting Your Course
Join our public courses in our United States of America facilities. Private class trainings will be organized at the location of your preference, according to your schedule.