Train and Deploy a Machine Learning Model with Azure Machine Learning - Applied Skills Workshop Training in Republic of the Philippines

  • Learn via: Classroom
  • Duration: 1 Day
  • Level: Intermediate
  • Price: From €1,306+VAT
We can host this training at your preferred location. Contact us!

To train a machine learning model with Azure Machine Learning, you need to make data available and configure the necessary compute. After training your model and tracking model metrics with MLflow, you can decide to deploy your model to an online endpoint for real-time predictions. Throughout this learning path, you explore how to set up your Azure Machine Learning workspace, after which you train and deploy a machine learning model.

None

Module 1: Make data available in Azure Machine Learning

Learn about how to connect to data from the Azure Machine Learning workspace. You're introduced to datastores and data assets.

  • Introduction
  • Understand URIs
  • Create a datastore
  • Create a data asset
  • Exercise - Make data available in Azure Machine Learning
  • Knowledge check
  • Summary

Module 2: Work with compute targets in Azure Machine Learning

Learn how to work with compute targets in Azure Machine Learning. Compute targets allow you to run your machine learning workloads. Explore how and when you can use a compute instance or compute cluster.

  • Introduction
  • Choose the appropriate compute target
  • Create and use a compute instance
  • Create and use a compute cluster
  • Exercise - Work with compute resources
  • Knowledge check
  • Summary

Module 3: Work with environments in Azure Machine Learning

Learn how to use environments in Azure Machine Learning to run scripts on any compute target.

  • Introduction
  • Understand environments
  • Explore and use curated environments
  • Create and use custom environments
  • Exercise - Work with environments
  • Knowledge check
  • Summary

Module 4: Run a training script as a command job in Azure Machine Learning

Learn how to convert your code to a script and run it as a command job in Azure Machine Learning.

  • Introduction
  • Convert a notebook to a script
  • Run a script as a command job5
  • Use parameters in a command job
  • Exercise - Run a training script as a command job
  • Knowledge check
  • Summary

Module 5: Track model training with MLflow in jobs

Learn how to track model training with MLflow in jobs when running scripts.

  • Introduction
  • Track metrics with MLflow
  • View metrics and evaluate models
  • Exercise - Use MLflow to track training jobs
  • Knowledge check
  • Summary

Module 6: Register an MLflow model in Azure Machine Learning

Learn how to log and register an MLflow model in Azure Machine Learning.

  • Introduction
  • Log models with MLflow
  • Understand the MLflow model format
  • Register an MLflow model
  • Exercise - Log and register models with MLflow
  • Knowledge check
  • Summary

Module 7: Deploy a model to a managed online endpoint

Learn how to deploy models to a managed online endpoint for real-time inferencing.

  • Introduction
  • Explore managed online endpoints
  • Deploy your MLflow model to a managed online endpoint
  • Deploy a model to a managed online endpoint
  • Test managed online endpoints
  • Exercise - Deploy an MLflow model to an online endpoint
  • Knowledge check
  • Summary


Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Republic of the Philippines facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

01 January 2025 (1 Day)
Quezon City, Manila, Davao City
Classroom / Virtual Classroom
01 January 2025 (1 Day)
Quezon City, Manila, Davao City
Classroom / Virtual Classroom
06 February 2025 (1 Day)
Quezon City, Manila, Davao City
Classroom / Virtual Classroom
06 February 2025 (1 Day)
Quezon City, Manila, Davao City
Classroom / Virtual Classroom
03 March 2025 (1 Day)
Quezon City, Manila, Davao City
Classroom / Virtual Classroom
03 March 2025 (1 Day)
Quezon City, Manila, Davao City
Classroom / Virtual Classroom
20 April 2025 (1 Day)
Quezon City, Manila, Davao City
Classroom / Virtual Classroom
22 April 2025 (1 Day)
Quezon City, Manila, Davao City
Classroom / Virtual Classroom
Train and Deploy a Machine Learning Model with Azure Machine Learning - Applied Skills Workshop Training Course in Philippines

The Philippines, officially the Republic of the Philippines, is an island country of Southeast Asia. The island country is located in the western Pacific Ocean, and consists of approximately 7.640 islands. And those islands are categorized under three main geographical divisions: Mindanao, Luzon and Visayas. Manila is the capital city of the Philippines and the resort island in the Western Visayas region, Boracay is one of the most popular vacation spots.

The climate of the Philippines is tropical and monsoonal. From May to October, rain-bearing winds blow from the southwest while drier winds come from the northeast from November to February. That's why the best time to visit the Philippines is during the dry season between November and April.

Discover a wealth of IT courses tailored to your needs, encompassing programming, software development, business skills, data science, cybersecurity, cloud computing and virtualization. Let our experienced instructors guide you through hands-on training and offer valuable insights at any location of your preference within Philippines.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.