Module A: Overview of Data Analytics and the Data Pipeline
	 
- 		Data analytics use cases
- 		Using the data pipeline for analytics
	 
	Module 1: Using Amazon Redshift in the Data Analytics Pipeline
	 
- 		Why Amazon Redshift for data warehousing?
- 		Overview of Amazon Redshift
	 
	Module 2: Introduction to Amazon Redshift
	 
- 		Amazon Redshift architecture
- 		Interactive Demo 1: Touring the Amazon Redshift console
- 		Amazon Redshift features
- 		Practice Lab 1: Load and query data in an Amazon Redshift cluster
	 
	Module 3: Ingestion and Storage
	 
- 		Ingestion
- 		Interactive Demo 2: Connecting your Amazon Redshift cluster using a Jupyter notebook with Data API
- 		Data distribution and storage
- 		Interactive Demo 3: Analyzing semi-structured data using the SUPER data type
- 		Querying data in Amazon Redshift
- 		Practice Lab 2: Data analytics using Amazon Redshift Spectrum
	 
	Module 4: Processing and Optimizing Data
	 
- 		Data transformation
- 		Advanced querying
- 		Practice Lab 3: Data transformation and querying in Amazon Redshift
- 		Resource management
- 		Interactive Demo 4: Applying mixed workload management on Amazon Redshift
- 		Automation and optimization
- 		Interactive demo 5: Amazon Redshift cluster resizing from the dc2.large to ra3.xlplus cluster
	 
	Module 5: Security and Monitoring of Amazon Redshift Clusters
	 
- 		Securing the Amazon Redshift cluster
- 		Monitoring and troubleshooting Amazon Redshift clusters
	 
	Module 6: Designing Data Warehouse Analytics Solutions
	 
- 		Data warehouse use case review
- 		Activity: Designing a data warehouse analytics workflow
	 
	Module B: Developing Modern Data Architectures on AWS
	 
- 		Modern data architectures