Azerbaycan Amazon SageMaker Studio for Data Scientists Eğitimi

  • Eğitim Tipi: Classroom
  • Süre: 3 Gün
  • Seviye: Expert
Explore Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models.
Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models quickly. It does this by bringing together a broad set of capabilities purpose-built for ML. This course prepares experienced data scientists to use the tools that are a part of SageMaker Studio, including Amazon CodeWhisperer and Amazon CodeGuru Security scan extensions, to improve productivity at every step of the ML lifecycle.
  • Course level: Advanced
  • Duration: 3 days
  • Activities
This course includes presentations, hands-on labs, demonstrations, discussions, and a capstone project.
WHO SHOULD ATTEND?
Experienced data scientists who are proficient in ML and deep learning fundamentals
Daha fazla +
Bu eğitimi kendi kurumunuzda planlayabilirsiniz.

Önkoşullar

  • Experience using ML frameworks
  • Python programming experience
  • At least 1 year of experience as a data scientist responsible for training, tuning, and deploying models
  • AWS Technical Essentials
Daha fazla +

Neler Öğreneceksiniz

Accelerate the process to prepare, build, train, deploy, and monitor ML solutions using Amazon SageMaker Studio

Daha fazla +

Outline

Day 1
Module 1: Amazon SageMaker Studio Setup
  • JupyterLab Extensions in SageMaker Studio
  • Demonstration: SageMaker user interface demo
Module 2: Data Processing
  • Using SageMaker Data Wrangler for data processing
  • Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
  • Using Amazon EMR
  • Using AWS Glue interactive sessions
  • Using SageMaker Processing with custom scripts
Module 3: Model Development
  • SageMaker training jobs
  • Built-in algorithms
  • Bring your own script
  • Bring your own container
  • SageMaker Experiments
Day 2
Module 3: Model Development (continued)
  • SageMaker Debugger
  • Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
  • Automatic model tuning
  • SageMaker Autopilot: Automated ML
  • Demonstration: SageMaker Autopilot
  • Bias detection
  • SageMaker Jumpstart
Module 4: Deployment and Inference
  • SageMaker Model Registry
  • SageMaker Pipelines
  • SageMaker model inference options
  • Scaling
  • Testing strategies, performance, and optimization
Module 5: Monitoring
  • Amazon SageMaker Model Monitor
  • Discussion: Case study
  • Demonstration: Model Monitoring
Day 3
Module 6: Managing SageMaker Studio Resources and Updates
  • Accrued cost and shutting down
  • Updates
  • Capstone
Environment setup

  • Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
  • Challenge 2: Create feature groups in SageMaker Feature Store
  • Challenge 3: Perform and manage model training and tuning using SageMaker Experiments
  • (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
  • Challenge 5: Evaluate the model for bias using SageMaker Clarify
  • Challenge 6: Perform batch predictions using model endpoint
  • (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline
  • Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
  • SageMaker Feature Store
  • Hands-On Lab: Feature engineering using SageMaker Feature Store
  • Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
  • Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning Models
  • Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
  • Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
  • Hands-On Lab: Inferencing with SageMaker Studio
Daha fazla +


Eğitimlerle ilgili bilgi almak ve diğer tüm sorularınız için bize ulaşın!

Eğitim Tarihleri

Sınıf eğitimlerimizi Azerbaycan ofislerimizde düzenlemekteyiz. Kurumunuza özel eğitimleri ise, dilediğiniz tarih ve lokasyonda organize edebiliriz.

07 aprel 2025 (3 Gün)
Baku
Classroom / Virtual Classroom
18 aprel 2025 (3 Gün)
İstanbul
Classroom / Virtual Classroom
24 aprel 2025 (3 Gün)
İzmir
Classroom / Virtual Classroom
19 may 2025 (3 Gün)
Bodrum
Classroom / Virtual Classroom
19 may 2025 (3 Gün)
Antalya
Classroom / Virtual Classroom
12 iyun 2025 (3 Gün)
Kapadokya
Classroom / Virtual Classroom
13 iyun 2025 (3 Gün)
Bursa
Classroom / Virtual Classroom
14 iyul 2025 (3 Gün)
Ankara
Classroom / Virtual Classroom
Amazon SageMaker Studio for Data Scientists Eğitimi Azerbaycan

Kardeş ülke Azerbaycan (resmi adıyla Azerbaycan Cumhuriyeti) Kafkasya’da, Güney Kafkas Dağları bölgesinde bulunmaktadır. Çok zengin bir kültüren mirasa sahip olan Azerbaycan’ın, Hazar Denizi, Rusya, Gürcistan, Ermenistan ve İran gibi sınır komşuları vardır. Kafkasya’nın en büyük yüzölçümlü ülkesi olan Azerbaycan’da harika bir doğa çeşitliliği mevcut olup, hayvan yaşamının zenginliği de dikkat çekicidir. Üniter bir devlet olan Azerbaycan’ın Cumhurbaşkanı İlham Aliyev, resmi dili Azerice’dir.

Farsça Azar (Ateş) ve Payegan (Muhafız) kelimelerinin birlikteliğinden adını alan Azerbaycan Ateşler Ülkesi olarak da bilinmektedir. Bakü’de bulunan Flame Towers ülkenin en turistik yerlerinden biridir. Ülkede çok sayıda yanardağ ve petrol yatağı bulunmaktadır. Azerbaycan’ın mutlaka görülmesi gereken yerleri arasında Bakü’deki Alev Kuleleri, Kız Kalesi, Ateşgah, Targovi Caddesi ve Bakü Bulvarı’nın yanı sıra farklı şehirlerdeki Şeki Hanları Sarayı, Kobustan Milli Parkı, Han Bağı, Kebele ve Göygöl Milli Parkı sayılabilir.
Sitemizi kullanarak çerezlere (cookie) izin vermektesiniz. Detaylı bilgi için Çerez Politika'mızı inceleyebilirsiniz.