Module A: Overview of Data Analytics and the Data Pipeline
	 
- 		Data analytics use cases
- 		Using the data pipeline for analytics
	 
	Module 1: Introduction to Amazon EMR
	 
- 		Using Amazon EMR in analytics solutions
- 		Amazon EMR cluster architecture
- 		Interactive Demo 1: Launching an Amazon EMR cluster
- 		Cost management strategies
	 
	Module 2: Data Analytics Pipeline Using Amazon EMR: Ingestion and Storage
	 
- 		Storage optimization with Amazon EMR
- 		Data ingestion techniques
	 
	Module 3: High-Performance Batch Data Analytics Using Apache Spark on Amazon EMR
	 
- 		Apache Spark on Amazon EMR use cases
- 		Why Apache Spark on Amazon EMR
- 		Spark concepts
- 		Interactive Demo 2: Connect to an EMR cluster and perform Scala commands using the Spark shell
- 		Transformation, processing, and analytics
- 		Using notebooks with Amazon EMR
- 		Practice Lab 1: Low-latency data analytics using Apache Spark on Amazon EMR
	 
	Module 4: Processing and Analyzing Batch Data with Amazon EMR and Apache Hive
	 
- 		Using Amazon EMR with Hive to process batch data
- 		Transformation, processing, and analytics
- 		Practice Lab 2: Batch data processing using Amazon EMR with Hive
- 		Introduction to Apache HBase on Amazon EMR
	 
	Module 5: Serverless Data Processing
	 
- 		Serverless data processing, transformation, and analytics
- 		Using AWS Glue with Amazon EMR workloads
- 		Practice Lab 3: Orchestrate data processing in Spark using AWS Step Functions
	 
	Module 6: Security and Monitoring of Amazon EMR Clusters
	 
- 		Securing EMR clusters
- 		Interactive Demo 3: Client-side encryption with EMRFS
- 		Monitoring and troubleshooting Amazon EMR clusters
- 		Demo: Reviewing Apache Spark cluster history
	 
	Module 7: Designing Batch Data Analytics Solutions
	 
- 		Batch data analytics use cases
- 		Building Batch Data Analytics Solutions on AWS
- 		Activity: Designing a batch data analytics workflow
	 
	Module B: Developing Modern Data Architectures on AWS
	 
- 		Modern data architectures