Comprehensive C and C++ Secure Coding (X86) Training in Norway

  • Learn via: Classroom / Virtual Classroom / Online
  • Duration: 4 Days
  • Price: Please contact for booking options
We can host this training at your preferred location. Contact us!

As a developer, your duty is to write bulletproof code. However...

What if we told you that despite all of your efforts, the code you have been writing your entire career is full of weaknesses you never knew existed? What if, as you are reading this, hackers were trying to break into your code? How likely would they be to succeed?

This advanced course will change the way you look at code. A hands-on training during which we will teach you all of the attackers’ tricks and how to mitigate them, leaving you with no other feeling than the desire to know more.

It is your choice to be ahead of the pack, and be seen as a game changer in the fight against cybercrime.

General C/C++ development

  • Understand basic concepts of security, IT security and secure coding
  • Realize the severe consequences of unsecure buffer handling
  • Understand the architectural protection techniques and their weaknesses
  • Have a practical understanding of cryptography
  • Understand essential security protocols
  • Understand some recent attacks against cryptosystems
  • Learn about XML security
  • Learn about typical coding mistakes and how to avoid them
  • Be informed about recent vulnerabilities in various platforms, frameworks and libraries
  • Get practical knowledge in using security testing techniques and tools
  • Learn how to set up and operate the deployment environment securely
  • Get sources and further readings on secure coding practices

Day 1

  • IT security and secure coding
    • Nature of security
    • What is risk?
    • IT security vs. secure coding
    • From vulnerabilities to botnets and cybercrime
      • Nature of security flaws
      • Reasons of difficulty
      • From an infected computer to targeted attacks
  • x86 machine code, memory layout and stack operations
    • Intel 80x86 Processors – main registers
    • Intel 80x86 Processors – most important instructions
    • Intel 80x86 Processors – flags
    • Intel 80x86 Processors – control instructions
    • Intel 80x86 Processors – stack handling and flow control
    • The memory address layout
    • The function calling mechanism in C/C++ on x86
    • Calling conventions
    • The local variables and the stack frame
    • Function calls – prologue and epilogue of a function
    • Stack frame of nested calls
    • Stack frame of recursive functions
  • Buffer overflow
    • Stack overflow
      • Buffer overflow on the stack
      • Overwriting the return address
      • Exercises – introduction
      • Exercise BOFIntro
      • Exercise BOFShellcode
    • Protection against stack overflow
      • Specific protection methods
      • Protection methods at different layers
      • The protection matrix of software security
      • Stack overflow – Prevention (during development)
      • Stack overflow – Detection (during execution)
      • Fortify compiler option (FORTIFY_SOURCE)
      • Exercise BOFShellcode – Using the Fortify compiler option
    • Stack smashing protection
      • Stack smashing protection variants
      • Stack smashing protection in GCC
      • Exercise BOFShellcode – Stack smashing protection
      • Effects of stack smashing protection
    • Address Space Layout Randomization (ASLR)
      • Randomization with ASLR
      • Practical weaknesses and limitations to ASLR
      • Circumventing ASLR: NOP sledding
    • Non executable memory areas – the NX bit
      • Access control on memory segments
      • The Never eXecute (NX) bit


Day 2

  • Buffer overflow
    • The protection matrix of software security
    • Return-to-libc attack – Circumventing the NX bit protection
      • Circumventing memory execution protection
      • Return-to-libc attack
    • Return oriented programming (ROP)
      • Exploiting with ROP
      • ROP gadgets
      • ROP mitigation
        • Mitigation techniques of ROP attack
    • Heap overflow
      • Memory allocation managed by a doubly-linked list
      • Buffer overflow on the heap
      • Steps of freeing and joining memory blocks
      • Freeing allocated memory blocks
      • Case study – Heartbleed
        • TLS Heartbeat Extension
        • Heartbleed – information leakage in OpenSSL
        • Heartbleed – fix in v1.0.1g
      • Protection against heap overflow
  • Practical cryptography
    • Rule #1 of implementing cryptography
    • Cryptosystems
      • Elements of a cryptosystem
    • Symmetric-key cryptography
      • Providing confidentiality with symmetric cryptography
      • Symmetric encryption algorithms
      • Modes of operation
      • Symmetric encryption with OpenSSL: encryption
      • Symmetric encryption with OpenSSL: decryption
    • Other cryptographic algorithms
      • Hash or message digest
      • Hash algorithms
      • SHAttered
      • Hashing with OpenSSL
      • Message Authentication Code (MAC)
      • Providing integrity and authenticity with a symmetric key
      • Random number generation
        • Random numbers and cryptography
        • Cryptographically-strong PRNGs
        • Weak PRNGs in C and C++
        • Stronger PRNGs in C
        • Generating random numbers with OpenSSL
        • Hardware-based TRNGs
    • Asymmetric (public-key) cryptography
      • Providing confidentiality with public-key encryption
      • Rule of thumb – possession of private key
      • The RSA algorithm
        • Introduction to RSA algorithm
        • Encrypting with RSA
        • Combining symmetric and asymmetric algorithms
        • Digital signing with RSA
        • Asymmetric encryption with OpenSSL
        • Digital signatures with OpenSSL
    • Public Key Infrastructure (PKI)
      • Man-in-the-Middle (MitM) attack
      • Digital certificates against MitM attack
      • Certificate Authorities in Public Key Infrastructure
      • X.509 digital certificate
  • Security protocols
    • Secure network protocols
    • Specific vs. general solutions
    • The TLS protocol
      • SSL and TLS
      • Usage options
      • Security services of TLS
      • SSL/TLS handshake
  • Cryptographic vulnerabilities
    • Protocol-level vulnerabilities
      • BEAST
      • FREAK
      • FREAK – attack against SSL/TLS
      • Logjam attack
    • Padding oracle attacks
      • Adaptive chosen-ciphertext attacks
      • Padding oracle attack
      • CBC decryption
      • Padding oracle example
      • Lucky Thirteen
      • POODLE
  • XML security
    • Introduction
    • XML parsing
    • XML injection
      • Injection principles
      • Exercise – XML injection
      • Protection through sanitization and XML validation
      • XML parsing in C++
    • Abusing XML Entity
      • XML Entity introduction
      • Exercise – XML bomb
      • XML bomb
      • XML external entity attack (XXE) – resource inclusion
      • Exercise – XXE attack
      • Preventing entity-related attacks
      • Case study – XXE in Google Toolbar


Day 3

  • Common coding errors and vulnerabilities
    • Input validation
      • Input validation concepts
      • Integer problems
        • Representation of negative integers
        • Integer ranges
        • Integer overflow
        • Integer problems in C/C++
        • The integer promotion rule in C/C++
        • Arithmetic overflow – spot the bug!
        • Exercise IntOverflow
        • What is the value of abs(INT_MIN)?
        • Signedness bug – spot the bug!
        • Integer truncation – spot the bug!
        • Integer problem – best practices
        • Case study – Android Stagefright
      • Injection
        • Injection principles
        • SQL Injection exercise
        • Typical SQL Injection attack methods
        • Blind and time-based SQL injection
        • SQL Injection protection methods
        • Command injection
        • Command injection exercise – starting Netcat
        • Case study - Shellshock
      • Printf format string bug
        • Printf format strings
        • Printf format string bug – exploitation
        • Exercise Printf
        • Printf format string exploit – overwriting the return address
      • Printf format string problem – best practices
      • Some other input validation problems
        • Array indexing – spot the bug!
        • Off-by-one and other null termination errors
        • The Unicode bug
      • Path traversal vulnerability
        • Path traversal – weak protections
        • Path traversal – best practices
      • Log forging
        • Some other typical problems with log files
  • Common coding errors and vulnerabilities
    • Code quality problems
      • Dangers arising from poor code quality
      • Poor code quality – spot the bug!
      • Unreleased resources
      • Type mismatch – Spot the bug!
      • Exercise TypeMismatch
      • Memory allocation problems
        • Smart pointers
        • Zero length allocation
        • Double free
        • Mixing delete and delete[]
      • Use after free
        • Use after free – Instance of a class
        • Spot the bug
        • Use after free – Dangling pointers
        • Case study - WannaCry


Day 4

  • Common coding errors and vulnerabilities
    • Improper use of security features
      • Typical problems related to the use of security features
      • Password management
        • Exercise – Weakness of hashed passwords
        • Password management and storage
        • Brute forcing
        • Special purpose hash algorithms for password storage
        • Argon2 and PBKDF2 implementations in C/C++
        • bcrypt and scrypt implementations in C/C++
        • Case study – the Ashley Madison data breach
        • Typical mistakes in password management
        • Exercise – Hard coded passwords
      • Sensitive information in memory
        • Protecting secrets in memory
        • Sensitive info in memory - minimize the attack surface
        • Your secrets vs. dynamic memory
        • Zeroisation
        • Zeroisation vs. optimization – Spot the bug!
        • Copies of sensitive data on disk
        • Core dumps
        • Disabling core dumps
        • Swapping
        • Memory locking - preventing swapping
        • Problems with page locking
        • Best practices
      • Insufficient anti-automation
        • Captcha
        • Captcha weaknesses
    • Improper error and exception handling
      • Typical problems with error and exception handling
      • Empty catch block
      • Overly broad catch
      • Exercise ErrorHandling – spot the bug!
      • Exercise – Error handling
      • Case study – "e;#iamroot"e; authentication bypass in macOS
        • Authentication process in macOS (High Sierra)
        • Incorrect error handling in opendirectoryd
        • The #iamroot vulnerability (CVE-2017-13872)
        • Information leakage through error reporting
    • Time and state problems
      • Time and state related problems
      • Serialization errors
      • Exercise TOCTTOU
      • Best practices against TOCTTOU
      • Problems with temp files
      • Requirements for creating temp files
      • Requirements explained
      • Creating temp files on POSIX systems
      • Creating temp files portably
      • Deleting temp files
  • Security testing techniques and tools
    • General testing approaches
    • Source code review
      • Code review for software security
      • Taint analysis
      • Heuristic-based
      • Static code analysis
        • Static code analysis
        • Exercise – Static code analysis using FlawFinder
    • Testing the implementation
      • Manual vs. automated security testing
      • Penetration testing
      • Stress tests
      • Binary and memory analysis
        • Exercise – Binary analysis with strings
      • Instrumentation libraries and frameworks
        • Exercise – Using Valgrind
      • Fuzzing
        • Automated security testing - fuzzing
        • Challenges of fuzzing
        • Exercise – Fuzzing with AFL (American Fuzzy Lop)
  • Deployment environment
    • Assessing the environment
    • Password audit
    • Exercise – using John the Ripper
    • Testing random number generators
    • Exercise – Testing random number generators
    • Configuration management
      • Configuration management
    • Hardening
      • Hardening
      • Network-level hardening
      • Hardening the deployment – server administration
      • Hardening the deployment – access control
    • Patch and vulnerability management
      • Patch management
      • Vulnerability repositories
      • Vulnerability attributes
      • Common Vulnerability Scoring System – CVSS
      • Vulnerability management software
  • Principles of security and secure coding
    • Matt Bishop’s principles of robust programming
    • The security principles of Saltzer and Schroeder
  • Knowledge sources
    • Secure coding sources – a starter kit
    • Vulnerability databases
    • Recommended books – C/C++




Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Norway facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

Classroom / Virtual Classroom
03 september 2024
Oslo, Bergen, Trondheim
4 Days
Classroom / Virtual Classroom
12 september 2024
Oslo, Bergen, Trondheim
4 Days
Classroom / Virtual Classroom
12 september 2024
Oslo, Bergen, Trondheim
4 Days
Classroom / Virtual Classroom
14 september 2024
Oslo, Bergen, Trondheim
4 Days
Classroom / Virtual Classroom
19 september 2024
Oslo, Bergen, Trondheim
4 Days
Classroom / Virtual Classroom
21 september 2024
Oslo, Bergen, Trondheim
4 Days
Classroom / Virtual Classroom
07 oktober 2024
Oslo, Bergen, Trondheim
4 Days
Classroom / Virtual Classroom
16 oktober 2024
Oslo, Bergen, Trondheim
4 Days
Comprehensive C and C++ Secure Coding (X86) Training Course in Norway

The Nordic country Norway, is in Northern Europe. Known for its stunning natural beauty, including fjords, mountains, and forests, Norway is also famous for its high standard of living and strong social welfare system. Norway's capital and largest city is Oslo. Tromsø, Bergen, Trondheim and Stavanger are the other tourist attracting cities of Norway.

Norway is a constitutional monarchy with King Harald V as the head of state. The country has a population of 5,425,270 as of January 2022. Norway is a relatively small country and has a relatively low population density, with much of its land area covered by forests, mountains, and fjords. Despite its small size, Norway is known for its rich cultural heritage, strong economy, and stunning natural beauty, which attracts millions of visitors every year. This Nordic country is also known for its winter sports, such as skiing and snowboarding, and is a popular destination for outdoor enthusiasts.

Norway has a long history of invention and is home to numerous more top-tier tech firms and research facilities, such as; Kongsberg Gruppen, Telenor, Atea, Evry and Gjensidige Forsikring.

Due to the country's high latitude, there are large seasonal variations in daylight. From late May to late July, the sun never completely descends beneath the horizon. Which attracts many tourists around the world to see the "Land of the Midnight Sun". Tourists mainly visit Sognefjord, Norway's Largest Fjord, Pulpit Rock, one of the most photographed sites in Norway and of course the capital; Oslo.

Oslo is considered the business center of Norway. It is the country's largest city and the capital of Norway. The city is home to many of Norway's largest and most important companies, as well as several international organizations and research institutions. Additionally, the city is a popular tourist destination, known for its scenic location on the Oslo Fjord, its many museums and cultural attractions, and its vibrant nightlife and dining scene. Some of the most popular museums in Oslo are The Norwegian Museum of Cultural History, The Nobel Peace Center, The National Museum of Art, Architecture, and Design, The Munch Museum and The Vigeland Museum.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.