TDWI Advanced Dimensional Modeling: Techniques for Practitioners Training in Norway

  • Learn via: Classroom / Virtual Classroom / Online
  • Duration: 2 Days
  • Price: Please contact for booking options
We can host this training at your preferred location. Contact us!

Students learn the complete set of best practices—from multiple fact table designs, to bridge tables, to advanced slow change processing. Students learn to match these techniques to real-world business complexity, and explore their impacts on BI and data integration tools. Students also learn how to fit dimensional modeling into agile development frameworks, and receive templates for capturing requirements and designs.

This course assumes a basic understanding of dimensional modeling concepts, techniques, and terminology.

  • BI program managers
  • Business analysts
  • Data architects and modelers
  • BI architects and developers
  • Data integration architects and developers
  • Project managers
  • Database administrators
  • “Power users” and business subject matter experts

  • Why most subject areas require multiple fact tables, and how to identify them
  • When to use alternatives to the basic transaction fact table, including periodic snapshots, accumulating snapshots, and type-specific stars
  • How to cope with dimensional intricacy using techniques such as bridge tables, mini-dimensions, time-stamped dimensions, hybrid slow changes, and other slow change options
  • Techniques to ensure your data warehouse will scale as new subject areas are added
  • How design fits into development methods, who should be involved in design activities, and what tasks and outputs should be incorporated

Module One

  • Fundamentals
  • Dimensional Modeling
  • Process measurement
  • Uses beyond database design
  • Information Architectures and Dimensional Data
  • Inmon’s CIF Architecture
  • Kimball’s Dimensional Bus
  • Stand-alone Data Marts
  • Fundamental Terms and Best Practices
  • Facts and dimensions
  • Surrogate keys, natural keys and slow change processing
  • Fundamental concepts including grain, sparsity and additivity
  • Best practices for fact tables and dimension tables
  • Implementations
  • Relational (star and snowflake)
  • Multidimensional (cube)
  • Cubes as primary store
  • Cubes as derived data stores

Module Two

  • Multiple Stars
  • Multiple star solutions
  • Designing multiple fact tables
  • Identifying multiple processes
  • Differences in dimensionality
  • The pitfalls of single fact table design
  • Using multiple stars
  • How not to query multiple fact tables
  • The concept of drilling across
  • What you need to know about your query and reporting tools
  • Conformance and business value
  • High impact business questions span processes
  • The concept of conformance
  • Ensuring subject areas work together
  • Enabling incremental implementation

Module Three

  • Advanced Fact Table Design
  • Transaction schemas
  • Transaction grain
  • Shortcomings of transaction designs
  • Periodic Snapshots
  • Snapshot grain and period
  • Semi-additivity, density, and impact on BI
  • Building both transaction and snapshot schemas
  • Snapshots and averages
  • Accumulating Snapshots
  • Studying process efficiency
  • Accumulating metrics in a single row
  • Lag analysis
  • Impacts on slow change processing and data integration
  • Building both transaction and accumulating snapshots
  • Factless Fact Tables
  • Processes that seem to lack metrics
  • Factless fact tables that track events
  • Pros and cons of adding constant-value fact
  • Factless fact tables that track conditions
  • Comparing conditions to actual events
  • Heterogeneous Attributes
  • Attributes that vary based on category
  • The impact of modeling a single set of attributes
  • Core and custom dimensions
  • Core and custom fact tables
  • Alternatives to core and custom solutions

Module Four

  • Design and Data Integration
  • The data integration process
  • Loading a dimension table
  • Loading fact tables
  • Key lookup processing
  • Designing to aid key management
  • The impact of slow changes on key lookups
  • Adding attributes to aid lookup process
  • Designing to reduce slow change bottlenecks
  • The bottlenecks of slow change processing
  • How dimension checksums aid slow change processing
  • Specifying data transformation rules
  • How to capture standard translations and data quality rules
  • Why this must be done at design-time
  • Invalid or late reference data
  • Receiving valid facts with invalid or missing reference data
  • Adding rows to dimension tables so that facts can be loaded
  • Adjusting facts when reference data arrives
  • Adding columns to support QA
  • Housekeeping columns in dimension tables
  • Housekeeping dimensions for fact tables

Module Five

  • Advanced Dimension Design
  • Understanding hierarchies
  • Drilling with and without hierarchies
  • Multiple hierarchies in one dimension
  • Impact of hierarchies on BI, ETL and DBA perspectives
  • Why to model hierarchies
  • Snowflake schemas
  • Dimension Reuse
  • Modeling roles
  • Querying with roles
  • Nulls
  • Problems introduced by NULL values
  • Avoiding NULL dimension attributes
  • Avoiding NULLs with optional relationships
  • NULL facts

Module Six

  • Advanced Slow Change Processing
  • Time-stamped Dimensions
  • Why type 2 is not good enough
  • Time-stamped dimensions (transaction dimensions)
  • Using with a fact table
  • Hybrid attributes that behave like facts and dimensions
  • Mini-dimensions
  • Large and expanding dimension tables
  • The use of a mini-dimension to stem growth
  • Impact on schema capability
  • Type 4 and Type 5 slow changes
  • Loading the mini-dimension
  • Current and Previous
  • Limited access to unchanged value
  • Hybrid Responses
  • Tracking both Type 1 and Type 2 responses
  • For dimension Attributes (Type 6)
  • For entire dimension tables (Type 7)

Module Seven

  • Bridge Table Design
  • The dimension bridge
  • When a single fact needs to reference more than one dimension row


Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Norway facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

11 mars 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
12 mars 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
15 mars 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
22 mars 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
11 mars 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
12 mars 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
07 april 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
15 mars 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
TDWI Advanced Dimensional Modeling: Techniques for Practitioners Training Course in Norway

The Nordic country Norway, is in Northern Europe. Known for its stunning natural beauty, including fjords, mountains, and forests, Norway is also famous for its high standard of living and strong social welfare system. Norway's capital and largest city is Oslo. Tromsø, Bergen, Trondheim and Stavanger are the other tourist attracting cities of Norway.

Norway is a constitutional monarchy with King Harald V as the head of state. The country has a population of 5,425,270 as of January 2022. Norway is a relatively small country and has a relatively low population density, with much of its land area covered by forests, mountains, and fjords. Despite its small size, Norway is known for its rich cultural heritage, strong economy, and stunning natural beauty, which attracts millions of visitors every year. This Nordic country is also known for its winter sports, such as skiing and snowboarding, and is a popular destination for outdoor enthusiasts.

Norway has a long history of invention and is home to numerous more top-tier tech firms and research facilities, such as; Kongsberg Gruppen, Telenor, Atea, Evry and Gjensidige Forsikring.

Due to the country's high latitude, there are large seasonal variations in daylight. From late May to late July, the sun never completely descends beneath the horizon. Which attracts many tourists around the world to see the "Land of the Midnight Sun". Tourists mainly visit Sognefjord, Norway's Largest Fjord, Pulpit Rock, one of the most photographed sites in Norway and of course the capital; Oslo.

Oslo is considered the business center of Norway. It is the country's largest city and the capital of Norway. The city is home to many of Norway's largest and most important companies, as well as several international organizations and research institutions. Additionally, the city is a popular tourist destination, known for its scenic location on the Oslo Fjord, its many museums and cultural attractions, and its vibrant nightlife and dining scene. Some of the most popular museums in Oslo are The Norwegian Museum of Cultural History, The Nobel Peace Center, The National Museum of Art, Architecture, and Design, The Munch Museum and The Vigeland Museum.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.