TDWI Data Modeling: Data Analysis and Design for BI and Data Warehousing Systems Training in Norway

  • Learn via: Classroom / Virtual Classroom / Online
  • Duration: 2 Days
  • Price: Please contact for booking options
We can host this training at your preferred location. Contact us!

Business intelligence and data warehousing systems challenge the proven data modeling techniques of the past. From requirements to implementation, new roles, uses, and kinds of data demand updated modeling skills. The data modeler’s toolbox must address relational data, dimensional data, unstructured data, and master data. For those with data modeling experience, this course extends their skills to meet today’s modeling challenges. Those new to data modeling are introduced to the broad range of modeling skills needed for BI/DW systems. Those who need to understand data models, but not necessarily develop them, will learn about the various forms of models and what they are intended to communicate.

This course assumes basic understanding of data warehousing fundamentals.

Data architects; data modelers; BI program and project managers; BI/DW system developers

  • Differences in modeling techniques for business transactions, business events, and business metrics
  • Different types of data and their implications
  • Application of business context to modeling activities
  • The role of business requirements in BI data modeling
  • The role of source data analysis in data modeling
  • Use of normalized modeling techniques for data warehouse analysis and design
  • Use of dimensional modeling techniques for data warehouse analysis and design
  • The roles of generalization and abstraction in data warehouse design
  • The roles of identity and hierarchy management in data warehouse design
  • How time-variant data is represented in data models
  • Implementation and optimization considerations for warehousing data stores

Module One: Data Modeling Concepts

The Data Modeling Life Cycle 

  • Where Data Modeling Begins And Ends
  • Between Business Needs And Implemented Data

Kinds Of Data Systems

  • Business Uses Of Data

Data Taxonomies

  • Data Properties
  • Data Characteristics

Data Modeling Framework For BI

  • Where And What To Model


Module Two: Business Data Models

Business Context

  • Business Drivers, Goals, And Strategies
  • Business Information Needs
  • Business Domains
  • Business Subjects

Business Data Model Development

  • Top-Down – Incremental And Iterative

Gathering Business Questions

  • The Modeling Process
  • Working With The Business
  • An Example

Analyzing Business Questions

  • The Modeling Process
  • Mapping Facts And Qualifiers – Finding The Facts
  • Mapping Facts And Qualifiers – Fact/Qualifier Associations
  • An Example

Fact Analysis And Refinement

  • Removing Redundancy
  • An Example

Qualifier Analysis And Refinement

  • Finding Hierarchies
  • An Example

Business Dimensional Modeling

  • The Modeling Process
  • An Example


Module Three: Logical Data Models

What To Model

  • The Data And Information Pipeline

Understanding Data Structures

  • Why Sources Matter
  • Extracting Source Data Structure
  • Source Data Profiling

Logical Relational Modeling

  • The Modeling Process
  • Logical Models For Data Warehouse And Ods
  • A Data Warehouse Example
  • Logical Models For Marts And Reporting

Logical Dimensional Modeling

  • Data Structure Of Business Metrics
  • The Modeling Process
  • Modeling Meters And Measures
  • Adding The Dimensions
  • Refining And Enriching The Dimensions
  • Declaring The Grain
  • Refining And Enriching The Measures

Logical Models And Business Metrics

  • Creating A Catalog Of Metrics
  • Classifying Metrics
  • An Example

Logical Models And Business Analytics

  • Analytics Applications
  • Data Mining Applications

Logical Models And Master Data Management

  • Identity Management
  • Hierarchy Management

Logical Models And Unstructured Data

  • Unstructured Data And Content Management
  • Unstructured Data And Text Analytics
  • Big Data


Module Four: Implementation Data Models

Data Structure In Transaction Systems

  • Extracting The Structure Of Existing Data

Structural Modeling And Data Integration

  • From Business Models To Technology Models
  • Normalization
  • The Normalization Process
  • A Normalization Example
  • Time-Variant Data Structures
  • A Snapshot Example
  • An Audit Trail Example
  • An Example Of States
  • Access, Navigation, Security, And Distribution
  • Access And Navigation Examples
  • Security And Distribution Examples

Structural Modeling And Business Analytics

  • From Metrics Models To Technology Models
  • Star-Schema Design
  • Star-Schema Design Process
  • Star-Schema Design - Modeling Dimension Tables
  • Star-Schema Design - Dimension Table Key
  • Star-Schema Design – Considering The Facts
  • Star-Schema Design – Fact Table Key
  • Analytic Application And Data Structures
  • Data Mining Data Structures

Physical Design Overview

  • The Results Of Physical Design And Implementation

Some Optimization Techniques

  • Derivation
  • Aggregation
  • Summarization
  • Horizontal Partitioning
  • Vertical Partitioning
  • Optimization Summary

Physical Design And Implementation

  • Implementing Relational Data
  • Implementing Business Analytics
  • Implementing Olap

Module Five: Summary And Conclusion

Appendices

  • Appendix A - Entity-Relationship Modeling Basics
  • Relational Data Design
  • Introduction To Entity/Relationship Modeling
  • E/R Model Components
  • Entities And Attributes
  • Relationships
  • Subtypes And Supertypes
  • Reading E/R Models: E/R Models For Communication

Appendix B – Case Study

Appendix C – Exercises

  • Exercise One – Business Domains
  • Exercise Two – Business Subjects
  • Exercise Three – Fact Qualifier Matrix
  • Exercise Four – Fact Qualifier Matrix Refinement
  • Exercise Five – Logical Dimensional Model
  • Exercise Six – Star Schema



Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Norway facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

07 januar 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
15 januar 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
07 januar 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
08 februar 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
15 januar 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
12 februar 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
19 februar 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
08 februar 2025 (2 Days)
Oslo, Bergen, Trondheim
Classroom / Virtual Classroom
TDWI Data Modeling: Data Analysis and Design for BI and Data Warehousing Systems Training Course in Norway

The Nordic country Norway, is in Northern Europe. Known for its stunning natural beauty, including fjords, mountains, and forests, Norway is also famous for its high standard of living and strong social welfare system. Norway's capital and largest city is Oslo. Tromsø, Bergen, Trondheim and Stavanger are the other tourist attracting cities of Norway.

Norway is a constitutional monarchy with King Harald V as the head of state. The country has a population of 5,425,270 as of January 2022. Norway is a relatively small country and has a relatively low population density, with much of its land area covered by forests, mountains, and fjords. Despite its small size, Norway is known for its rich cultural heritage, strong economy, and stunning natural beauty, which attracts millions of visitors every year. This Nordic country is also known for its winter sports, such as skiing and snowboarding, and is a popular destination for outdoor enthusiasts.

Norway has a long history of invention and is home to numerous more top-tier tech firms and research facilities, such as; Kongsberg Gruppen, Telenor, Atea, Evry and Gjensidige Forsikring.

Due to the country's high latitude, there are large seasonal variations in daylight. From late May to late July, the sun never completely descends beneath the horizon. Which attracts many tourists around the world to see the "Land of the Midnight Sun". Tourists mainly visit Sognefjord, Norway's Largest Fjord, Pulpit Rock, one of the most photographed sites in Norway and of course the capital; Oslo.

Oslo is considered the business center of Norway. It is the country's largest city and the capital of Norway. The city is home to many of Norway's largest and most important companies, as well as several international organizations and research institutions. Additionally, the city is a popular tourist destination, known for its scenic location on the Oslo Fjord, its many museums and cultural attractions, and its vibrant nightlife and dining scene. Some of the most popular museums in Oslo are The Norwegian Museum of Cultural History, The Nobel Peace Center, The National Museum of Art, Architecture, and Design, The Munch Museum and The Vigeland Museum.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.