Building Intelligent Applications with AI and ML - Level 1 Training in Germany

  • Learn via: Classroom
  • Duration: 3 Days
  • Price: From €2,853+VAT
Exclusive - Learn the fundamentals of Artificial Intelligence and Machine Learning to develop intelligent applications.

Intelligent applications that are developed using Artificial Intelligence and Machine Learning are helping businesses take critical initiatives. These applications incorporate the power of predictive and prescriptive analytics, consumer data, and cutting-edge technologies. They are used by many organizations and enterprises to automatically discover, learn and give predictions and recommendations. Examples of such applications include risk analysis, fraud detection, and prevention, personalized health services, etc.

This course focuses on covering the fundamentals like Statistics, probability, and a variety of machine learning algorithms that form the building blocks for the development of intelligent applications.



Is This The Right Course?

  • Basic familiarity with Python programming.
  • Basic understanding of Data Terminologies.
  • Familiarity with enterprise IT.
  • Foundational knowledge in mathematical concepts like linear algebra and probability.
  • Basic linux skills.
  • Basic SQL skills.

Who Should Attend?

This is an introduction-level hands-on course suitable for everyone who wants to explore the field of Artificial Intelligence (AI) and Machine Learning (ML). This course covers the foundations of AI, ML, programming, search, and logic along with their applications to computational problems. This is a level 1 course in building your skills for developing Intelligent applications using Machine Learning and Artificial Intelligence. Anyone who wants to shift their career to AI and ML can attend this course such as

  • Business Analysts
  • Data Analysts
  • Developers
  • Administrators
  • Architects
  • Managers
  • Anyone new to AI and ML who wants to understand the foundations of ML and AI for developing ML applications.
Read more +
We can host this training at your preferred location.

Prerequisites

  • Basic familiarity with Python programming.
  • Basic understanding of Data Terminologies.
  • Familiarity with enterprise IT.
  • Foundational knowledge in mathematical concepts like linear algebra and probability.
  • Basic linux skills.
  • Basic SQL skills.
Read more +

What You Will Learn

  • Explore Jupiter notebooks and Python
  • Recall and Remember Statistics and Probability concepts and explore coding in Python for data analysis
  • Understand advanced probability concepts and data visualizations using libraries such as Matplotlib, seaborn
  • Understand various Machine Learning Algorithms and their applications
  • Understand various Predictive Models
  • Apply Machine Learning algorithms to build predictive models
  • Understand Recommendation Systems
  • Understand how to deal with data in the real world
  • Apply Machine Learning on Big Data using Apache Spark
  • build UI and REST APIs for ML models
Read more +

Outline

  1. Getting Started with Jupitor Notebooks and Python
    • Installing Python 3.x and Data Science environment
    • Importing required modules
    • Writing and executing Python code in Jupiter notebook
    • Understanding Data Visualizations using Matplotlib and seaborn.
    • Running Python scripts
    • Statistics and Probability Essentials
      • Understanding Descriptive and Inferential Statistics and the difference between them
      • Understanding Data types - quantitative and qualitative
      • How to understand the spread of data with measures of Central Tendency and dispersion
      • Understanding dirty data - missing values and outliers
      • Understanding probability distributions, Probability density function and probability mass function
      • Understanding the spread and distribution of data using Python.
      • Introduction to Percentiles and Moments and why they are important?
      • Understanding Hypothesis Testing and various types of Hypothesis tests with their applications.
    • Advanced Probability Concepts
      • Covariance and Correlation and their role in understanding Data
      • How Conditional Probability helps in predictive analytics?
      • Baye's Theorem and it's applications
  2. Machine Learning Algorithms
    • Understanding Different Types of Machine Learning Algorithms - Supervised, Semi-Supervised, UnSupervised, Reinforcement Learning
    • Distinguish between Linear and Non-Linear, Distance-based, Parametric and Non-Parametric machine learning models
    • Understanding different phases of building Machine Learning Models
    • Differentiate between Classification and Regression
    • An overview of linear and logistic regressions
    • An overview of decision trees and random forests
    • An overview of KNN and SVM
    • How to Build Predictive Models with available data?
      • Understanding your data - Data loading and descriptive analysis
      • Dealing with unclean data - Data Cleaning and Pre-processing
      • Building machine learning models with Linear Regression and Logistic Regression
      • Understand when to apply Polynomial Regression and build a model
      • Building a predictive model using multivariate regression
      • Multi-level models
  3. Evaluating and Tuning your models with advanced Machine Learning with Python
    • Understanding model fit - overfitting and underfitting, Bias-Variance Trade-Off
    • Understanding model evaluation metrics for regression and classification
    • Understanding K-fold cross-validation to avoid overfitting
    • Bayesian models
    • Implementing Email spam classifier with Naïve Bayes Classifier
    • Understand K-Nearest Neighbors Algorithm and using KNN for predictive analytics
    • Understand Gradient Descent, Stochastic Gradient Descent, and tune your model
    • Understand ensemble methods, bagging and boosting
    • Understand various boosting algorithms
    • Unsupervised Machine Learning
      • Understanding Clustering
      • Understand K-Means Clustering with a case study
      • Understanding Dimensionality Reduction and Principal Component Analysis
      • Applying PCA on a real world dataset
    • Understanding and Building Recommendation Systems
      • What are recommendation Systems
      • Understanding User-based and Item-based Collaborative Filtering
      • Finding similar movies
      • Improving the results of movie similarities
      • Making movie recommendations to people
      • Improving our recommendation results
Read more +


Contact us for more detail about our trainings and for all other enquiries!

Avaible Training Dates

Join our public courses in our Germany facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

10 Mai 2025 (3 Days)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
€2,853 +VAT
25 Mai 2025 (3 Days)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
€2,853 +VAT
25 Mai 2025 (3 Days)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
€2,853 +VAT
04 Juni 2025 (3 Days)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
€2,853 +VAT
04 Juni 2025 (3 Days)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
€2,853 +VAT
06 Juni 2025 (3 Days)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
€2,853 +VAT
09 Juni 2025 (3 Days)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
€2,853 +VAT
21 Juni 2025 (3 Days)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
€2,853 +VAT
Building Intelligent Applications with AI and ML - Level 1 Training Course in Germany

The Federal Republic of Germany is the second most populous country in Europe and is located in Central Europe. The official language of the country is German. Germany is one of the richest countries in the world. The main exports of the country include motor vehicles and iron and steel products.

Here are some fun facts about Germany:
The fairy tale writer, the Brothers Grimm, came from Germany and wrote many famous stories such as Cinderella, Snow White, and Sleeping Beauty.
Germany is home to the largest theme park in Europe, the Europa-Park.
The famous composer Ludwig van Beethoven was born in Germany.
The Autobahn, the German highway system, is known for having no general speed limit.


Berlin was divided by the Berlin Wall from 1961 to 1989. Known for its street art, Berlin has many colorful murals and graffiti throughout the city. Also, Berlin is home to many famous museums, such as the Pergamon Museum and the Museum Island. Many clubs and bars stay open until the early hours of the morning in this big city.

Another popular city is Munich, which is famous for its Oktoberfest beer festival that attracts millions of visitors every year. Munich is also home to many historic buildings, including Nymphenburg Palace and the Marienplatz town square.

The country's capital and largest city is Berlin, however Frankfurt is considered to be the business and financial center of Germany. It is home to the Frankfurt Stock Exchange, the European Central Bank, and many other financial institutions. Because of its central location within Europe and its status as a major financial hub, Frankfurt is often referred to as the "Mainhattan," a play on the city's name and its association with the Manhattan financial district in New York City.

Frankfurt is also a major transportation hub, with the largest airport in Germany and one of the largest in Europe, Frankfurt Airport. Additionally, it is a popular destination for tourists, with its historic city center, beautiful parks, and vibrant cultural scene.

Some of the top German technology companies like Siemens AG, Bosch, SAP SE, Deutsche Telekom, Daimler AG and Volkswagen has business centers in Frankfurt. The country has a strong tradition of engineering and innovation, and is home to many other world-class technology companies and research institutions.

Tailored to meet the specific needs of Germany, Bilginç IT Academy combines cutting-edge training methodologies with our comprehensive range of Certification Exam preparation courses and accredited corporate training programs. Experience a transformative approach to IT training that will redefine your expectations.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.