TDWI Data Quality Management: Techniques for Data Profiling, Assessment, and Improvement Training in Germany

  • Learn via: Classroom / Virtual Classroom / Online
  • Duration: 1 Day
  • Price: Please contact for booking options
We can host this training at your preferred location. Contact us!

Data quality is one of the most difficult challenges for nearly every business, IT organization, and BI program. The most common approach to data quality problems is reactive—a process of fixing problems when they are discovered and reported. But reactive data quality methods are not quality management; they are simply quality maintenance—a never-ending cycle of continuously fixing defects but rarely removing the causes. The only proven path to sustainable data quality is through a comprehensive quality management program that includes data profiling, data quality assessment, root cause analysis, data cleansing, and process improvement.

There is no prerequisites.

BI, MDM, and data governance program and project managers and practitioners; data stewards; data warehouse designers and developers; data quality professionals

  • Techniques for column, table, and cross-table data profiling
  • How to analyze data profiles and find the stories within them
  • Subjective and objective methods to assess and measure data quality
  • How to apply OLAP and performance scorecards for data quality management
  • How to get beyond symptoms and understand the real causes of data quality defects
  • Data cleansing techniques to effectively remediate existing data quality deficiencies
  • Process improvement methods to eliminate root causes and prevent future defects

Module One: Data Quality Basics

  • Data Quality Concepts 
    • Defining Data Quality
    • Integrity and Correctness
    • Data Quality and Metadata Quality
    • Rules as Metadata
    • Metadata and DQ Management
  • Data Quality Processes
    • Quality Control, Assurance, & Management
    • Data Profiling
    • Data Quality Assessment
    • Data Cleansing
    • Root Cause Analysis
    • Process Improvement

Module Two: Profiling Data

  • Data Profiling Concepts
    • Purpose and Processes
  • Column Profiling
    • Extracting Values Metadata
    • Examining Values Metadata
  • Table Profiling
    • Examining Dependencies
    • Keys and Uniqueness
    • Column Dependencies
  • Cross-Table Profiling
    • Examining Redundancy and Relationships
    • Redundancy
    • Relationships
  • Analyzing Data Profiles
    • Column Profiles
    • Values Frequency
    • The Story in the Profiles
    • Data Quality Rules
  • Data Profiling in Practice
    • Profiling and Projects
    • People and Technology

Module Three: Assessing Data Quality

  • DQ Assessment Concepts
    • DQ Assessment Defined
    • Subjective Assessment
    • Objective Assessment
    • Assessment in DQ Management
  • Subjective Assessment
    • Subjective Assessment Process
    • A Survey of Data Quality Perceptions
  • Objective Assessment
    • Objective Assessment Process
    • Planning and Preparation
    • Cataloging Data Quality Rules
    • Cataloging Data Quality Errors
    • Testing and Tuning Rules
    • Reporting and Analyzing Data Quality
  • Assessment in Practice
    • Assessment and Projects
    • People, Roles, and Skills

Module Four: Fixing Data Quality Defects

  • Data Cleansing Concepts
    • Data Cleansing Defined
    • Techniques
    • Cleansing Process Overview
    • Planning & Preparation
  • Procedural Data Cleansing
    • Names and Addresses
    • De-Duplication and Consolidation
  • Rule-Based Data Cleansing
    • Data Cleansing Rules
    • Rules Processing
  • Data Cleansing in Practice
    • Data Cleansing Workflow
    • Cleansing and the Data Warehouse
    • Data Cleansing and Projects
    • People, Roles, and Responsibilities

Module Five: Preventing Data Quality Defects

  • Root Cause Analysis
    • RCA Overview
    • The RCA Process
    • Causal Modeling
    • Five Whys
    • Fishbone Diagrams
    • Causal Loop Diagrams
  • Process Improvement
    • Process Improvement Principles
    • Process Improvement Overview
    • Prerequisites
    • Target Processes
    • Change Planning
    • Action Planning
    • Executing Change

Module Six: Summary and Conclusion

  • Sustaining Data Quality
    • Awareness, Accountability, Action
    • Mistakes to Avoid
  • References and Resources
    • To Learn More


Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Germany facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

19 Januar 2025 (1 Day)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
20 Januar 2025 (1 Day)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
06 Februar 2025 (1 Day)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
19 Januar 2025 (1 Day)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
20 Januar 2025 (1 Day)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
06 Februar 2025 (1 Day)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
04 März 2025 (1 Day)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
23 März 2025 (1 Day)
Berlin, Hamburg, Münih
Classroom / Virtual Classroom
TDWI Data Quality Management: Techniques for Data Profiling, Assessment, and Improvement Training Course in Germany

The Federal Republic of Germany is the second most populous country in Europe and is located in Central Europe. The official language of the country is German. Germany is one of the richest countries in the world. The main exports of the country include motor vehicles and iron and steel products.

Here are some fun facts about Germany:
The fairy tale writer, the Brothers Grimm, came from Germany and wrote many famous stories such as Cinderella, Snow White, and Sleeping Beauty.
Germany is home to the largest theme park in Europe, the Europa-Park.
The famous composer Ludwig van Beethoven was born in Germany.
The Autobahn, the German highway system, is known for having no general speed limit.


Berlin was divided by the Berlin Wall from 1961 to 1989. Known for its street art, Berlin has many colorful murals and graffiti throughout the city. Also, Berlin is home to many famous museums, such as the Pergamon Museum and the Museum Island. Many clubs and bars stay open until the early hours of the morning in this big city.

Another popular city is Munich, which is famous for its Oktoberfest beer festival that attracts millions of visitors every year. Munich is also home to many historic buildings, including Nymphenburg Palace and the Marienplatz town square.

The country's capital and largest city is Berlin, however Frankfurt is considered to be the business and financial center of Germany. It is home to the Frankfurt Stock Exchange, the European Central Bank, and many other financial institutions. Because of its central location within Europe and its status as a major financial hub, Frankfurt is often referred to as the "Mainhattan," a play on the city's name and its association with the Manhattan financial district in New York City.

Frankfurt is also a major transportation hub, with the largest airport in Germany and one of the largest in Europe, Frankfurt Airport. Additionally, it is a popular destination for tourists, with its historic city center, beautiful parks, and vibrant cultural scene.

Some of the top German technology companies like Siemens AG, Bosch, SAP SE, Deutsche Telekom, Daimler AG and Volkswagen has business centers in Frankfurt. The country has a strong tradition of engineering and innovation, and is home to many other world-class technology companies and research institutions.

Tailored to meet the specific needs of Germany, Bilginç IT Academy combines cutting-edge training methodologies with our comprehensive range of Certification Exam preparation courses and accredited corporate training programs. Experience a transformative approach to IT training that will redefine your expectations.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.