Big Data on AWS Training in Hong Kong

  • Learn via: Classroom / Virtual Classroom / Online
  • Duration: 3 Days
  • Price: Please contact for booking options
We can host this training at your preferred location. Contact us!

Big Data on AWS introduces you to cloud-based big data solutions such as Amazon Elastic MapReduce (EMR), Amazon Redshift, Amazon Kinesis and the rest of the AWS big data platform. In this course, we show you how to use Amazon EMR to process data using the broad ecosystem of Hadoop tools like Hive and Hue. We also teach you how to create big data environments, work with Amazon DynamoDB, Amazon Redshift, and Amazon Kinesis, and leverage best practices to design big data environments for security and cost-effectiveness.

Target Audience

  • Individuals responsible for designing and implementing big data solutions, namely Solutions Architects and SysOps Administrators
  • Data Scientists and Data Analysts interested in learning about big data solutions on AWS

Delivery Method

This course is delivered through a mix of:

  • Instructor-Led Training (ILT)
  • Hands-On Labs

Hands-On Activity

This course allows you to test new skills and apply knowledge to your working environment through a variety of practical exercises.

We recommend that attendees of this course have the following prerequisites:

  • Basic familiarity with big data technologies, including Apache Hadoop, MapReduce, HDFS, and SQL/NoSQL querying
  • Students should complete the Big Data Technology Fundamentals web-based training or have equivalent experience
  • Working knowledge of core AWS services and public cloud implementation
  • Students should complete the AWS Essentials course or have equivalent experience
  • Basic understanding of data warehousing, relational database systems, and database design

This course teaches you how to:

  • Fit AWS solutions inside of a big data ecosystem
  • Leverage Apache Hadoop in the context of Amazon EMR
  • Identify the components of an Amazon EMR cluster
  • Launch and configure an Amazon EMR cluster
  • Leverage common programming frameworks available for Amazon EMR including Hive, Pig, and Streaming
  • Leverage Hue to improve the ease-of-use of Amazon EMR
  • Use in-memory analytics with Spark on Amazon EMR
  • Choose appropriate AWS data storage options
  • Identify the benefits of using Amazon Kinesis for near real-time big data processing
  • Leverage Amazon Redshift to efficiently store and analyze data
  • Comprehend and manage costs and security for a big data solution
  • Identify options for ingesting, transferring, and compressing data
  • Leverage Amazon Athena for ad-hoc query analytics
  • Leverage AWS Glue to automate ETL workloads.
  • Use visualization software to depict data and queries using Amazon QuickSight
  • Orchestrate big data workflows using AWS Data Pipeline

Day 1

  • Overview of Big Data
  • Ingestion
  • Big Data streaming and Amazon Kinesis
  • Using Kinesis to stream and analyze Apache server logs
  • Storage Solutions
  • Querying Big Data using Amazon Athena
  • Using Amazon Athena to analyze log data
  • Introduction to Apache Hadoop and Amazon EMR

Day 2

  • Using Amazon Elastic MapReduce
  • Storing and Querying Data on DynamoDB
  • Hadoop Programming Frameworks
  • Processing Server Logs with Hive on Amazon EMR
  • Streamlining Your Amazon EMR Experience with Hue
  • Running Pig Scripts in Hue on Amazon EMR
  • Spark on Amazon EMR
  • Processing New York Taxi dataset using Spark on Amazon EMR

Day 3

  • Using AWS Glue to automate ETL workloads
  • Amazon Redshift and Big Data
  • Visualizing and Orchestrating Big Data
  • Visualizing
  • Managing Amazon EMR Costs
  • Securing Big Data solutions
  • Big Data Design Patterns


Contact us for more detail about our trainings and for all other enquiries!

Upcoming Trainings

Join our public courses in our Hong Kong facilities. Private class trainings will be organized at the location of your preference, according to your schedule.

10 February 2025 (3 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
14 February 2025 (3 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
10 February 2025 (3 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
14 February 2025 (3 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
12 March 2025 (3 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
23 March 2025 (3 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
23 March 2025 (3 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
12 March 2025 (3 Days)
Hong Kong, Kowloon, Tsuen Wan
Classroom / Virtual Classroom
Big Data on AWS Training Course in Hong Kong

Hong Kong is officially known as the Hong Kong Special Administrative Region of the People's Republic of China (HKSAR) and is a city and special administrative region of China on the eastern Pearl River Delta in South China. Hong Kong is one of the most densely populated places in the world, with over 7.5 million population. The official languages of the HKSAR are Chinese and English. Hong Kong is a highly developed territory and ranks fourth on the United Nations Human Development Index and the residents of Hong Kong have the highest life expectancies in the world.

The best time to visit Hong Kong is from September to December, since the temperatures, averaging between 19 to 28 degree Celsius. During this outdoor activities-friendly travelling season, you can take a walk along Victoria Harbour, visit the islands of Lantau, Lamma and Cheung Chau and participate in the Mid-Autumn Festival. Top choices of the tourists to visit in Hong Kong are Big Buddha statue, Wong Tai Sin Temple, Repulse Bay and the Beaches and Hong Kong Disneyland.

Explore our diverse range of IT courses, encompassing programming, software development, cyber security, data science, business skills, and Agile/Scrum. Wherever you are in Hong Kong, our seasoned instructors will bring practical training and expert knowledge to your preferred training venue.
By using this website you agree to let us use cookies. For further information about our use of cookies, check out our Cookie Policy.