
Maslak Mahallesi, Maslak Meydan Sk. No:5. Spring Giz Plaza. Maslak/İstanbul
+90 212 282 7700 - info@bilginc.com

Certified C and C++ secure coding
Learn via: Classroom / Virtual Classroom / Online
Duration: 3 Gün
https://bilginc.com/tr/egitim/certified-c-and-cplusplus-secure-coding-785-egitimi/

Overview
To put it bluntly, writing C/C++ code can be a minefield for reasons ranging from memory management or dealing with legacy code to sharp deadlines
and code maintainability. Yet, beyond all that, what if we told you that attackers were trying to break into your code right now? How likely would they be
to succeed?

This course will change the way you look at your C/C++ code. We'll teach you the common weaknesses and their consequences that can allow hackers to
attack your system, and – more importantly – best practices you can apply to protect yourself. We give you a holistic view on C/C++ programming
mistakes and their countermeasures from the machine code level to virtual functions and OS memory management. We present the entire course
through live practical exercises to keep it engaging and fun.

Writing secure code will give you a distinct edge over your competitors. It is your choice to be ahead of the pack – take a step and be a game-changer in
the fight against cybercrime.

Topics include:

IT security and secure coding
x86 machine code, memory layout and stack operations
Buffer overflow
Practical cryptography
Security protocols
XML security
Common coding errors and vulnerabilities
Principles of security and secure coding
Knowledge sources

Prerequisites
General C/C++ development skills are required.

What You Will Learn
Understand basic concepts of security, IT security and secure coding
Realize the severe consequences of unsecure buffer handling
Understand the architectural protection techniques and their weaknesses
Have a practical understanding of cryptography
Understand essential security protocols
Learn about XML security
Learn about typical coding mistakes and how to avoid them
Be informed about recent vulnerabilities in various platforms, frameworks and libraries
Get sources and further readings on secure coding practices

Note: This course comes with a number of easy-to-understand exercises providing real-time ethical hacking fun. By accomplishing these exercises with
the support of the trainer, participants can analyze vulnerable code snippets and commit attacks against them in order to fully understand the root causes
of certain security problems. All exercises are prepared in a plug-and-play manner by using a pre-set desktop virtual machine, which provides a uniform
development environment.

Outline

Day 1

IT security and secure coding

Printed on: 03.29.2024 Page: 1/5

https://bilginc.com/tr/egitim/certified-c-and-cplusplus-secure-coding-785-egitimi/

Nature of security
What is risk?
IT security vs. secure coding
From vulnerabilities to botnets and cybercrime
Nature of security flaws
Reasons of difficulty
From an infected computer to targeted attacks
The Seven Pernicious Kingdoms
OWASP Top Ten 2017

x86 machine code, memory layout and stack operations

Intel 80x86 Processors – main registers
Intel 80x86 Processors – most important instructions
Intel 80x86 Processors – flags
Intel 80x86 Processors – control instructions
Intel 80x86 Processors – stack handling and flow control
The memory address layout
The function calling mechanism in C/C++ on x86
Calling conventions
The local variables and the stack frame
Function calls – prologue and epilogue of a function
Stack frame of nested calls
Stack frame of recursive functions

Buffer overflow

Stack overflow
Buffer overflow on the stack
Overwriting the return address
Exercises – introduction
Exercise BOFIntro
Exercise BOFShellcode
Exercise BOFShellcode – spot the bug!
Protection against stack overflow
Specific protection methods
Protection methods at different layers
The PreDeCo matrix of software security
Stack overflow – Prevention (during development)
Stack overflow – Detection (during execution)
Fortify istrumentation (FORTIFY_SOURCE)
Exercise BOFShellcode – Fortify
Stack smashing protection
Stack smashing protection variants
Stack smashing protection in GCC
Exercise BOFShellcode – Stack smashing protection
Effects of stack smashing protection
Bypassing stack smashing protection
Overwriting arguments – Mitigation
Address Space Layout Randomization (ASLR)
Randomization with ASLR
Using ASLR
Circumventing ASLR: NOP sledding
Non executable memory areas – the NX bit
Access Control on memory segments
The Never eXecute (NX) bit
Exercise BOFShellcode – Enforcing NX memory segments

Day 2

Buffer overflow

Return-to-libc attack – Circumventing the NX bit protection
Circumventing memory execution protection
Return-to-libc attack
Exercise BOFShellcode – The Return-to-libc attack
Return oriented programming (ROP)

Printed on: 03.29.2024 Page: 2/5

Exploiting with ROP
ROP gadgets
ROP gadget - Register fill with constants
ROP gadget – Memory write
Combining the ROP gadgets
Real ROP attack scenarios
ROP mitigation
Mitigation techniques of ROP attack
Heap overflow
Memory allocation managed by a doubly-linked list
Buffer overflow on the heap
Steps of freeing and joining memory blocks
Freeing allocated memory blocks
Case study – Heartbleed
TLS Heartbeat Extension
Heartbleed – information leakage in OpenSSL
Heartbleed – fix in v1.0.1g
Protection against heap overflow

Practical cryptography

Cryptosystems
Elements of a cryptosystem
Symmetric-key cryptography
Providing confidentiality with symmetric cryptography
Symmetric encryption algorithms
Block ciphers – modes of operation
Other cryptographic algorithms
Hash or message digest
Hash algorithms
SHAttered
Message Authentication Code (MAC)
Providing integrity and authenticity with a symmetric key
Random numbers and cryptography
Cryptographically-strong PRNGs
Hardware-based TRNGs
Asymmetric (public-key) cryptography
Providing confidentiality with public-key encryption
Rule of thumb – possession of private key
The RSA algorithm
Introduction to RSA algorithm
Encrypting with RSA
Combining symmetric and asymmetric algorithms
Digital signing with RSA
Public Key Infrastructure (PKI)
Man-in-the-Middle (MitM) attack
Digital certificates against MitM attack
Certificate Authorities in Public Key Infrastructure
X.509 digital certificate

Security protocols

Secure network protocols
Specific vs. general solutions
SSL/TLS protocols
Security services
SSL/TLS handshake

XML security

Introduction
XML parsing
XML injection
(Ab)using CDATA to store XSS payload in XML
Exercise – XML injection
Abusing XML Entity
XML Entity introduction

Printed on: 03.29.2024 Page: 3/5

XML bomb
Exercise – XML bomb
XML external entity attack (XXE) – resource inclusion
XML external entity attack – URL invocation
XML external entity attack – parameter entities
Exercise – XXE attack
Preventing entity-related attacks
Case study – XXE in Google Toolbar

Common coding errors and vulnerabilities

Improper error and exception handling
Typical problems with error and exception handling
Empty catch block
Overly broad catch
Exercise ErrorHandling – spot the bug!
Exercise – Error handling
Case study – '#iamroot' authentication bypass in macOS
Authentication process in macOS (High Sierra)
Incorrect error handling in opendirectoryd
The #iamroot vulnerability (CVE-2017-13872)
Time and state problems
Time and state related problems
Serialization errors (TOCTTOU)
Attacks with symbolic links
Exercise TOCTTOU
Code quality problems
Dangers arising from poor code quality
Poor code quality – spot the bug!
Unreleased resources
Type mismatch – Spot the bug!
Exercise TypeMismatch
Memory allocation problems
Smart pointers
Zero length allocation
Double free
Mixing delete and delete[]
Use after free
Use after free – Instance of a class
Spot the bug
Use after free – Dangling pointers

Day 3

Common coding errors and vulnerabilities

Input validation
Input validation concepts
Integer problems
Representation of negative integers
Integer ranges
Integer overflow
Integer problems in C/C++
The integer promotion rule in C/C++
Arithmetic overflow – spot the bug!
Exercise IntOverflow
What is the value of abs(INT_MIN)?
Signedness bug – spot the bug!
Integer truncation – spot the bug!
Integer problem – best practices
Case study – Android Stagefright
Injection flaws
SQL Injection exercise
Typical SQL Injection attack methods
Blind and time-based SQL injection
SQL Injection protection methods
Command injection
Command injection exercise – starting Netcat

Printed on: 03.29.2024 Page: 4/5

Printf format string bug
Printf format strings
Printf format string bug – exploitation
Exercise Printf
Printf format string exploit – overwriting the return address
Mitigation of printf format string problem
Some other input validation problems
Array indexing – spot the bug!
Off-by-one and other null termination errors
The Unicode bug
Path traversal vulnerability
Path traversal mitigation
Log forging
Some other typical problems with log files
Case study - Shellshock
Shellshock – basics of using functions in bash
Shellshock – vulnerability in bash
Exercise - Shellshock
Shellshock fix and counterattacks
Exercise – Command override with environment variables
Improper use of security features
Typical problems related to the use of security features
Insecure randomness
Weak PRNGs in C and C++
Stronger PRNGs in C
Password management
Exercise – Weakness of hashed passwords
Password management and storage
Brute forcing
Special purpose hash algorithms for password storage
Argon2 and PBKDF2 implementations in C/C++
bcrypt and scrypt implementations in C/C++
Case study – the Ashley Madison data breach
Typical mistakes in password management
Exercise – Hard coded passwords
Insufficient anti-automation
Captcha
Captcha weaknesses

Principles of security and secure coding

Matt Bishop’s principles of robust programming
The security principles of Saltzer and Schroeder

Knowledge sources

Secure coding sources – a starter kit
Vulnerability databases
Recommended books – C/C++

Printed on: 03.29.2024 Page: 5/5

	Certified C and C++ secure coding
	Day 1
	Day 2
	Day 3

